Carbazole alkaloids Koenigicine, Koenigine, Mahanine and Mukonicineas Multi-Target Inhibitors in Triple-Negative Breast Cancer: Insights into MMP9, MMP13, EGFR, and NUDT5 Interactions through Molecular Docking

Authors

DOI:

https://doi.org/10.18006/2025.13(1).97.107

Keywords:

Carbazolealkaloids, Triple-negative breast cancer (TNBC), Molecular docking, Multi-target inhibitors, MMP9, MMP13, EGFR, NUDT5

Abstract

Plant-based natural products have been widely used for treating and preventing diseases due to their nutritional and pharmacological benefits, significantly improving the health and well-being of individuals. These medicinal plants are also easily accessible and offer a low-cost, less harmful source for developing new medications. Breast cancer is the second most common form of cancer reported in women worldwide. The treatment of triple-negative breast cancer (TNBC) remains challenging, as this subtype lacks targeted therapeutics. TNBC accounts for approximately 15-20% of newly diagnosed breast cancer cases. Because TNBC tumors do not express estrogen receptors (ER), progesterone receptors (PR), or human epidermal growth factor receptor 2 (HER2), patients with TNBC do not benefit significantly from treatments aimed at ER, PR and HER2-positive breast tumors. While TNBC initially responds well to chemotherapy, it often develops resistance over time, complicating disease management and presenting a significant clinical challenge. To address therapy resistance and improve patient outcomes, exploring new therapeutic options for TNBC is essential. This molecular docking study shows strong interactions between the carbazole alkaloids Koenigicine, Koenigine, Mahanine, and Mukonicine with key oncogenic protein targets such as MMP9, MMP13, NUDT5, and EGFR, which are associated with TNBC progression. The binding energy of these molecules ranges from -7.4 to -9.9 kcal/mol, indicating a very high potential for inhibition. Mahanine exhibits the highest binding affinity for all tested targets, demonstrating strong interactions with NUDT5 (-9.8 kcal/mol) and EGFR (-9.9 kcal/mol). This suggests its potential role as a multi-target inhibitor. The primary non-covalent interactions that contribute to the binding of carbazole alkaloids with target proteins include Van der Waals forces, hydrogen bonds, alkyl interactions, π-alkyl interactions, and π-π stacking. These interactions are crucial for stabilizing the ligand-protein complexes, enhancing binding affinity, and likely influencing the inhibitory effects of the compounds on TNBC-associated oncogenic proteins. The results of this study highlight the potential role of carbazole alkaloids in TNBC treatment, warranting further experimental validation.

Author Biographies

Anupam Sharma, Department of Physics, Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, 151302, India

Department of Physics, Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, 151302, India

Narinder Kumar, Department of Physics, Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, 151302, India

Department of Physics, Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, 151302, India

Seema Ramniwas, Marwadi University Research Centre, Faculty of Sciences, Marwadi University, Rajkot 360003, Gujarat, India

Marwadi University Research Centre, Faculty of Sciences, Marwadi University, Rajkot 360003, Gujarat, India

Ritu Chauhan, Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India

Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India

Moyad Shahwan, Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates

Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates

Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates

Ammar Abdulrahman Jairoun, Health and Safety Department, Dubai Municipality, Dubai 67, Dubai, United Arab Emirates

Health and Safety Department, Dubai Municipality, Dubai 67, Dubai, United Arab Emirates

Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Pulau Pinang, 11500, Malaysia

Hardeep Singh Tuli, Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India

Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India

Anil Kumar Sharma, Department of Biotechnology, Amity School of Biological Sciences, Amity University Punjab, Mohali, Punjab, 140306, India

Department of Biotechnology, Amity School of Biological Sciences, Amity University Punjab, Mohali, Punjab, 140306, India

References

Ajay, S., Rahul, S., Sumit, G., Paras, M., Mishra, A., & Gaurav, A. (2011). Comprehensive review: Murraya koenigii Linn. Asian Journal of Pharmacy and Life Science, 1(4), 417-425.

Almutairi, S., Kalloush, H. M., Manoon, N. A., & Bardaweel, S. K. (2023). Matrix Metalloproteinases Inhibitors in Cancer Treatment: An Updated Review (2013–2023). Molecules, 28(14), 5567. https://doi.org/10.3390/molecules28145567. DOI: https://doi.org/10.3390/molecules28145567

Arif, M. A. A., Warsito, S. H., Lamid, M., Lokapirnasari, W. P., Khairullah, A. R., et al. (2024). Phytochemical Analysis of Curry Leaf Extract (Murraya koenigii L.) as a Potential Animal Feed and Medicinal Ingredient. Pharmacognosy Journal, 16(2), 471–477. https://doi.org/10.5530/pj.2024.16.75 DOI: https://doi.org/10.5530/pj.2024.16.75

Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E., Linder, T., Wawrosch, C., et al. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001 DOI: https://doi.org/10.1016/j.biotechadv.2015.08.001

Bai, X., Ni, J., Beretov, J., Graham, P., & Li, Y. (2021). Triple-negative breast cancer therapeutic resistance: Where is the Achilles' heel?. Cancer Letters, 497, 100–111. https://doi.org/10.1016/j.canlet.2020.10.016. DOI: https://doi.org/10.1016/j.canlet.2020.10.016

Balakrishnan, R., Vijayraja, D., Jo, S. H., Ganesan, P., Su-Kim, I., & Choi, D. K. (2020). Medicinal profile, phytochemistry, and pharmacological activities of Murraya koenigii and its primary bioactive compounds. Antioxidants, 9(2), 101. https://doi.org/10.3390/antiox9020568 DOI: https://doi.org/10.3390/antiox9020101

Beć, K., Grabska, J., & Huck, C. (2020). Biomolecular and bioanalytical applications of infrared spectroscopy - A review. Analytica Chimica Acta, 1133, 150–177. https://doi.org/10.1016/j.aca.2020.04.015. DOI: https://doi.org/10.1016/j.aca.2020.04.015

Cheang, M. C., Voduc, D., Bajdik, C., Leung, S., McKinney, S., Chia, S. K., Perou, C. M., & Nielsen, T. O. (2008). Basal-Like Breast Cancer Defined by Five Biomarkers Has Superior Prognostic Value than Triple-Negative Phenotype. Clinical Cancer Research, 14(5), 1368–1376. https://doi.org/10.1158/1078-0432.ccr-07-1658. DOI: https://doi.org/10.1158/1078-0432.CCR-07-1658

Dassault Systèmes BIOVIA (2016). Discovery Studio Modelling Environment, Release 2017; Dassault Systèmes: San Diego, CA, USA.

Dubey, A., Alanazi, A.M., Bhardwaj, R., & Ragusa, A. (2024). Identification of potential NUDT5 inhibitors from marine bacterial natural compounds via molecular dynamics and free energy landscape analysis. Molecular Diversity, 29 (1), 1-15, https://doi.org/10.1007/s11030-024-10950-5. DOI: https://doi.org/10.1007/s11030-024-10950-5

Endo, H., Owada, S., Inagaki, Y., Shida, Y., & Tatemichi, M. (2018). Glucose starvation induces LKB1-AMPK-mediated MMP-9 expression in cancer cells. Scientific Reports 8,10122. https://doi.org/10.1038/s41598-018-28074-w. DOI: https://doi.org/10.1038/s41598-018-28074-w

Gaikwad, S., Gawande, V., Mhaske, S., & Sharma, T. (2025). A review on the medicinal significance of Murraya koenigii. International Journal of Pharmaceutical Sciences, 3(1), 166–174. https://doi.org/10.5281/zenodo.14590932.

Gangawat, R., Parashar, R., & Yadav, R. K. (2024). Hepatoprotective Potential of Murraya koenigii (Curry Leaves) against Xenobiotics, Heavy Metals, and Hepatotoxic Agents: A Comprehensive Review. Current Drug Discovery Technologies, (in press). https://doi.org/10.2174/0115701638310869240628060001. DOI: https://doi.org/10.2174/0115701638310869240628060001

Ghosh, S., Ghosh, S., & Wategaonkar, S. (2020). C–H•••Y (Y=N, O, π) Hydrogen Bond: A Unique Unconventional Hydrogen Bond. Journal of the Indian Institute of Science, 100(1), 101–125. https://doi.org/10.1007/S41745-019-00145-5. DOI: https://doi.org/10.1007/s41745-019-00145-5

Gonzalez-Avila, G., Sommer, B., Mendoza-Posada, D. A., Ramos, C., Garcia-Hernandez, A. A., & Falfan-Valencia, R. (2019). Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Critical reviews in oncology/hematology, 137, 57-83. DOI: https://doi.org/10.1016/j.critrevonc.2019.02.010

Hansen, P.E., Vakili, M., Kamounah, F.S., & Spanget-Larsen, J. (2021). NH Stretching Frequencies of Intramolecularly Hydrogen-Bonded Systems: An Experimental and Theoretical Study. Molecules, 26(24), 7651. https://doi.org/10.3390/molecules26247651. DOI: https://doi.org/10.3390/molecules26247651

Kar, T., Dugam, P., Shivhare, S. C., Shetty, S. R., Choudhury, S., et al. (2024). Epidermal growth factor receptor inhibition potentiates chemotherapeutics‐mediated sensitization of metastatic breast cancer stem cells. Cancer Reports, 7. https://doi.org/10.1002/cnr2.2049. DOI: https://doi.org/10.1002/cnr2.2049

Leidy, J., Khan, A., & Kandil, D. (2014). Basal-Like Breast Cancer: Update on Clinicopathologic, Immunohistochemical, and Molecular Features. Archives of Pathology & Laboratory Medicine, 138(1), 37–43. https://doi.org/10.5858/arpa.2012-0439-ra. DOI: https://doi.org/10.5858/arpa.2012-0439-RA

Lejeune, M., Reverté, L., Gallardo, N., Sauras, E., Bosch, R., et al. (2023). Matrix Metalloproteinase-9 Expression is Associated with the Absence of Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients. International Journal of Molecular Sciences, 24(14), 11297. https://doi.org/10.3390/ijms241411297 DOI: https://doi.org/10.3390/ijms241411297

Lorion, C., Bardin, V., Bonnet, S., Lopez‐Gaydon, A., Vogelgesang, B., & Bechetoille, N. (2023). Elastogenic potential and antisagging properties of a novel Murraya koenigii extract. Journal of Cosmetic Dermatology, 23(3), 1036–1044. https://doi.org/10.1111/jocd.16059. DOI: https://doi.org/10.1111/jocd.16059

Mandel, A., Larsson, P., Sarwar, M., Semenas, J., Khaja, A. S. S., & Persson, J. L. (2018). The interplay between AR, EGF receptor and MMP-9 signaling pathways in invasive prostate cancer. Molecular Medicine, 24(1) 34. https://doi.org/10.1186/s10020-018-0035-4. DOI: https://doi.org/10.1186/s10020-018-0035-4

Mcule (2024). Mcule: A Platform for Molecular Design and Drug Discovery. Available at mcule.com.

National Center for Biotechnology Information. (2024). Compound summary for CID -278055 (Koenigicine), 5318825 (Koenigine), 36689305 (Mahanine), 86242003 (Mukonicine). PubChem. Retrieved October 10, 2024, from https://pubchem.ncbi.nlm.nih.gov/compound/.

Nedeljković, M., & Damjanović, A. (2019). Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells, 8(9), 957. doi: 10.3390/cells8090957. DOI: https://doi.org/10.3390/cells8090957

Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285. DOI: https://doi.org/10.1021/acs.jnatprod.9b01285

Ozaki, Y. (2021). Infrared spectroscopy—Mid-infrared, near-infrared, and far-infrared/terahertz spectroscopy. Analytical Sciences, 37(9), 1193–1212. https://doi.org/10.2116/ANALSCI.20R008. DOI: https://doi.org/10.2116/analsci.20R008

Patil, R., Mandlik, S., & Mandlik, D. (2023). Murraya koenigii (Curry Tree): A review of its Phytochemistry, Ethnomedicinal uses, and Pharmacology with Respect to Molecular Mechanisms. Current Traditional Medicine, 10(5), 73-79. https://doi.org/10.2174/2215083810666230609163404. DOI: https://doi.org/10.2174/2215083810666230609163404

Pinto, P., & Cojandaraj, L. (2024). Protective Effects of Murraya koenigii: Focus on Antihyperlipidemic Property. Current Drug Therapy, 20(1), 24-32. https://doi.org/10.2174/ 0115748855278592240131105512. DOI: https://doi.org/10.2174/0115748855278592240131105512

Polik, W.F., & Schmidt, J.R. (2022). WebMO: Web-based computational chemistry calculations in education and research. WIREs Computational Molecular Science, 12, e1554. https://doi.org/10.1002/wcms.1554. DOI: https://doi.org/10.1002/wcms.1554

Pradhan, S. P., Subedi, I., Adhikari, K., Gc, A., Pradhan, S. P., Aryal, M. R., Ghimire, G. P., & Pandey, B. P. (2024). In vitro and in silico approach for the evaluation of enzyme inhibitory potential of Kadipatta (Murraya koenigii) collected from western Nepal. Deleted Journal, 5(3), 200161. https://doi.org/10.1016/j.ctmp.2024.200161. DOI: https://doi.org/10.1016/j.ctmp.2024.200161

Qian, J., Ma, Y., Tahaney, W. M., Moyer, C. L., Lanier, A., et al. (2024). The novel phosphatase NUDT5 is a critical regulator of triple-negative breast cancer growth. Breast Cancer Research : BCR, 26(1), 23. https://doi.org/10.1186/s13058-024-01778-w. DOI: https://doi.org/10.1186/s13058-024-01814-9

Sadwal, S., Bharati, S., Dar, Z. A., & Kaur, S. (2023). Chemopreventive potential of hydroethanolic Murraya koenigii leaves extract against DMBA induced breast carcinogenesis: In-silico and in-vivo study. Journal of Ethnopharmacology, 319, 117124. https://doi.org/10.1016/j.jep.2023.117124. DOI: https://doi.org/10.1016/j.jep.2023.117124

Samanta, S.K., Choudhury, P., Kandimalla, R., Aqil, F., Moholkar, D.N., et al. (2024). Mahanine mediated therapeutic inhibition of estrogen receptor-α and CDK4/6 expression, decipher the chemoprevention-signaling cascade in preclinical model of breast cancer. Journal of Ethnopharmacology, 319 (2), 117235. https://doi.org/10.1016/j.jep.2023.117235. DOI: https://doi.org/10.1016/j.jep.2023.117235

Suvarna, E., Setlur, A. S., Chandrashekar, S., & Niranjan, V. (2024). Computational molecular perspectives on novel carbazole derivative as an anticancer molecule against CDK1 of breast and colorectal cancers via gene expression studies, novel two-way docking strategies, molecular mechanics and dynamics. Computational Biology and Chemistry, 108, 107979. https://doi.org/10.1016/j.compbiolchem.2023.107979. DOI: https://doi.org/10.1016/j.compbiolchem.2023.107979

Szczygielski, O., Dąbrowska, E., Niemyjska, S., Przylipiak, A., & Zajkowska, M. (2024). Targeting Matrix Metalloproteinases and Their Inhibitors in Melanoma. International Journal of Molecular Sciences, 25(24), 13558. https://doi.org/10.3390/ijms252413558. DOI: https://doi.org/10.3390/ijms252413558

Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A., & Dzobo, K. (2018). Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. International Journal of Molecular Sciences, 19(6), 1578. https://doi.org/10.3390/ijms19061578. DOI: https://doi.org/10.3390/ijms19061578

Wang, T., Tan, Y., Chen, Y., & Tan, C. (2023). Infrared spectral analysis for prediction of functional groups based on feature-aggregated deep learning. Journal of Chemical Information and Modeling, 63(15): 4615-4622. https://doi.org/10.1021/acs.jcim.3c00749. DOI: https://doi.org/10.1021/acs.jcim.3c00749

Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The Traditional Medicine and Modern Medicine from Natural Products. Molecules, 21(5), 559. https://doi.org/10.3390/molecules21050559. DOI: https://doi.org/10.3390/molecules21050559

Zagami, P., & Carey, L.A. (2022). Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer, 8(1), 95. https://doi.org/10.1038/s41523-022-00468-0. DOI: https://doi.org/10.1038/s41523-022-00468-0

Zhang, H., Qi, Y., Mao, Y., & Zheng, J. (2024). PDZK1 suppresses TNBC development and sensitizes TNBC cells to erlotinib via the EGFR pathway. Cell Death and Disease, 15(3), 199. https://doi.org/10.1038/s41419-024-06502-w. DOI: https://doi.org/10.1038/s41419-024-06502-2

Downloads

Published

2025-03-05

How to Cite

Sharma, A., Kumar, N., Ramniwas, S., Chauhan, R., Shahwan, M., Jairoun, A. A., Tuli, H. S., & Sharma, A. K. (2025). Carbazole alkaloids Koenigicine, Koenigine, Mahanine and Mukonicineas Multi-Target Inhibitors in Triple-Negative Breast Cancer: Insights into MMP9, MMP13, EGFR, and NUDT5 Interactions through Molecular Docking. Journal of Experimental Biology and Agricultural Sciences, 13(1), 97–107. https://doi.org/10.18006/2025.13(1).97.107

Issue

Section

RESEARCH ARTICLES

Categories