Molecular Interactions of Mycobacterial Transporter for Novel Antimicrobial Strategies
DOI:
https://doi.org/10.18006/2025.13(1).59.71Keywords:
Mycobacterium tuberculosis, Efflux Transporter, Protein-Ligand Interactions, MATE Transporter, Drug repurposingAbstract
Efflux mechanisms for extruding antimicrobials, mediated by multidrug transporters, are key contributors to multidrug resistance in mycobacteria. The current study focused on molecular interaction analysis of Mycobacterium tuberculosis multidrug transporter implicated in multidrug and antimicrobial resistance. We screened a library of efflux transporter inhibitors against the protein structure to identify a lead compound that can potentially inhibit the transporter significantly. The efflux transporter sequence was modeled based on crystallized templates using protein structure prediction and molecular docking. The analysis deduced molecular interactions and critical binding residues that can be targeted as novel biotherapeutics strategies against multidrug transporters of mycobacteria. This study paves the way for targeting multidrug and antimicrobial resistance in the mycobacteria, offering hope for developing effective treatments.
References
Alenazy R. (2022). Drug Efflux Pump Inhibitors: A Promising Approach to Counter Multidrug Resistance in Gram-Negative Pathogens by Targeting AcrB Protein from AcrAB-TolC Multidrug Efflux Pump from Escherichia coli. Biology, 11(9), 1328. https://doi.org/10.3390/biology11091328. DOI: https://doi.org/10.3390/biology11091328
Andre, E., Goeminne, L., Cabibbe, A., Beckert, P., Kabamba Mukadi, B., et al. (2017). Consensus numbering system for the rifampicin resistance-associated rpoB gene mutations in pathogenic mycobacteria. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 23(3), 167–172. https://doi.org/10.1016/j.cmi.2016.09.006. DOI: https://doi.org/10.1016/j.cmi.2016.09.006
Athar, M., Gervasoni, S., Catte, A., Basciu, A., Malloci, G., Ruggerone, P., & Vargiu, A. V. (2023). Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies?. Microbiology (Reading, England), 169(3), 001307. https://doi.org/10.1099/mic.0.001307. DOI: https://doi.org/10.1099/mic.0.001307
Black, P. A., Warren, R. M., Louw, G. E., van Helden, P. D., Victor, T. C., & Kana, B. D. (2014). Energy metabolism and drug efflux in Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy, 58(5), 2491–2503. https://doi.org/10.1128/AAC.02293-13. DOI: https://doi.org/10.1128/AAC.02293-13
Campolattano, N., D'Abrosca, G., Russo, L., De Siena, B., Della Gala, M., et al. (2023). Insight into the on/off switch that regulates expression of the MSMEG-3762/63 efflux pump in Mycobacterium smegmatis. Scientific reports, 13(1), 20332. https://doi.org/10.1038/s41598-023-47695-4. DOI: https://doi.org/10.1038/s41598-023-47695-4
Cripe, L. D., Uno, H., Paietta, E. M., Litzow, M. R., Ketterling, R. P., et al. (2010). Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: a randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood, 116(20), 4077–4085. doi:10.1182/blood-2010-04-277269 DOI: https://doi.org/10.1182/blood-2010-04-277269
Datta, D., Jamwal, S., Jyoti, N., Patnaik, S., & Kumar, D. (2024). Actionable mechanisms of drug tolerance and resistance in Mycobacterium tuberculosis. The FEBS journal, 291(20), 4433–4452. https://doi.org/10.1111/febs.17142. DOI: https://doi.org/10.1111/febs.17142
Day, N. J., Santucci, P., & Gutierrez, M. G. (2024). Host cell environments and antibiotic efficacy in tuberculosis. Trends in microbiology, 32(3), 270–279. https://doi.org/10.1016/ j.tim.2023.08.009. DOI: https://doi.org/10.1016/j.tim.2023.08.009
Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051. DOI: https://doi.org/10.1038/nprot.2016.051
Ghajavand, H., Kargarpour Kamakoli, M., Khanipour, S., Pourazar Dizaji, S., Masoumi, M., et al. (2019). Scrutinizing the drug resistance mechanism of multi- and extensively-drug resistant Mycobacterium tuberculosis: mutations versus efflux pumps. Antimicrobial resistance and infection control, 8, 70. https://doi.org/10.1186/s13756-019-0516-4. DOI: https://doi.org/10.1186/s13756-019-0516-4
Goletti, D., Meintjes, G., Andrade, B. B., Zumla, A., & Shan Lee, S. (2025). Insights from the 2024 WHO Global Tuberculosis Report - More Comprehensive Action, Innovation, and Investments required for achieving WHO End TB goals. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 150, 107325. https://doi.org/10.1016/j.ijid.2024.107325. DOI: https://doi.org/10.1016/j.ijid.2024.107325
Gopi, P., Gurnani, M., Singh, S., Sharma, P., & Pandya, P. (2023). Structural aspects of SARS-CoV-2 mutations: Implications to plausible infectivity with ACE-2 using computational modeling approach. Journal of biomolecular structure & dynamics, 41(14), 6518–6533. https://doi.org/10.1080/07391102.2022.2108901. DOI: https://doi.org/10.1080/07391102.2022.2108901
Hassan, K. A., Liu, Q., Elbourne, L. D. H., Ahmad, I., Sharples, D., et al. (2018). Pacing across the membrane: the novel PACE family of efflux pumps is widespread in Gram-negative pathogens. Research in microbiology, 169(7-8), 450–454. https://doi.org/10.1016/j.resmic.2018.01.001. DOI: https://doi.org/10.1016/j.resmic.2018.01.001
Henderson, P. J. F., Maher, C., Elbourne, L. D. H., Eijkelkamp, B. A., Paulsen, I. T., & Hassan, K. A. (2021). Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chemical reviews, 121(9), 5417–5478. https://doi.org/10.1021/acs.chemrev.0c01226. DOI: https://doi.org/10.1021/acs.chemrev.0c01226
Huang, L., Wu, C., Gao, H., Xu, C., Dai, M., Huang, L., Hao, H., Wang, X., & Cheng, G. (2022). Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics (Basel, Switzerland), 11(4), 520. https://doi.org/10.3390/antibiotics11040520. DOI: https://doi.org/10.3390/antibiotics11040520
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of molecular graphics, 14(1), 33–28. https://doi.org/10.1016/0263-7855(96)00018-5. DOI: https://doi.org/10.1016/0263-7855(96)00018-5
Kim, J., Cater, R. J., Choy, B. C., & Mancia, F. (2021). Structural Insights into Transporter-Mediated Drug Resistance in Infectious Diseases. Journal of molecular biology, 433(16), 167005. https://doi.org/10.1016/j.jmb.2021.167005. DOI: https://doi.org/10.1016/j.jmb.2021.167005
Klukovits, A., & Krajcsi, P. (2015). Mechanisms and therapeutic potential of inhibiting drug efflux transporters. Expert opinion on drug metabolism & toxicology, 11(6), 907–920. https://doi.org/10.1517/17425255.2015.1028917. DOI: https://doi.org/10.1517/17425255.2015.1028917
Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., et al. (2016). CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Journal of chemical theory and computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935. DOI: https://doi.org/10.1021/acs.jctc.5b00935
Long, Y., Wang, B., Xie, T., Luo, R., Tang, J., Deng, J., & Wang, C. (2024). Overexpression of efflux pump genes is one of the mechanisms causing drug resistance in Mycobacterium tuberculosis. Microbiology spectrum, 12(1), e0251023. https://doi.org/10.1128/spectrum.02510-23. DOI: https://doi.org/10.1128/spectrum.02510-23
Machado, D., Coelho, T. S., Perdigão, J., Pereira, C., Couto, I., Portugal, I., Maschmann, R. A., Ramos, D. F., von Groll, A., Rossetti, M. L. R., Silva, P. A., & Viveiros, M. (2017). Interplay between Mutations and Efflux in Drug Resistant Clinical Isolates of Mycobacterium tuberculosis. Frontiers in microbiology, 8, 711. https://doi.org/10.3389/fmicb.2017.00711. DOI: https://doi.org/10.3389/fmicb.2017.00711
Maphasa, R. E., Meyer, M., & Dube, A. (2021). The Macrophage Response to Mycobacterium tuberculosis and Opportunities for Autophagy Inducing Nanomedicines for Tuberculosis Therapy. Frontiers in cellular and infection microbiology, 10, 618414. https://doi.org/10.3389/fcimb.2020.618414. DOI: https://doi.org/10.3389/fcimb.2020.618414
Miotto, P., Sorrentino, R., De Giorgi, S., Provvedi, R., Cirillo, D. M., & Manganelli, R. (2022). Transcriptional regulation and drug resistance in Mycobacterium tuberculosis. Frontiers in cellular and infection microbiology, 12, 990312. https://doi.org/10.3389/fcimb.2022.990312. DOI: https://doi.org/10.3389/fcimb.2022.990312
Mishra, M. N., & Daniels, L. (2013). Characterization of the MSMEG_2631 gene (mmp) encoding a multidrug and toxic compound extrusion (MATE) family protein in Mycobacterium smegmatis and exploration of its polyspecific nature using biolog phenotype microarray. Journal of bacteriology, 195(7), 1610–1621. https://doi.org/10.1128/JB.01724-12. DOI: https://doi.org/10.1128/JB.01724-12
Monedero-Recuero, I., Gegia, M., Wares, D. F., Chadha, S. S., & Mirzayev, F. (2021). Situational analysis of 10 countries with a high burden of drug-resistant tuberculosis 2 years post-UNHLM declaration: progress and setbacks in a changing landscape. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 108, 557–567. https://doi.org/10.1016/j.ijid.2021.06.022. DOI: https://doi.org/10.1016/j.ijid.2021.06.022
Morrish, E., Mackiewicz, L., Silke, N., Pellegrini, M., Silke, J., Brumatti, G., & Ebert, G. (2020). Combinatorial Treatment of Birinapant and Zosuquidar Enhances Effective Control of HBV Replication In Vivo. Viruses, 12(8), 901. https://doi.org/10.3390/v12080901. DOI: https://doi.org/10.3390/v12080901
Nielsen, R. B., Holm, R., Pijpers, I., Snoeys, J., Nielsen, U. G., & Nielsen, C. U. (2023). Combinational Inhibition of P-Glycoprotein-Mediated Etoposide Transport by Zosuquidar and Polysorbate 20. Pharmaceutics, 15(1), 283. https://doi.org/10.3390/pharmaceutics15010283. DOI: https://doi.org/10.3390/pharmaceutics15010283
O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33. DOI: https://doi.org/10.1186/1758-2946-3-33
Peddireddy, V., Doddam, S. N., & Ahmed, N. (2017). Mycobacterial Dormancy Systems and Host Responses in Tuberculosis. Frontiers in immunology, 8, 84. https://doi.org/10.3389/fimmu.2017.00084. DOI: https://doi.org/10.3389/fimmu.2017.00084
Pelegrinova, L., Sofrankova, L., Spaldova, J., Stefik, P., Sulova, Z., Breier, A., & Elefantova, K. (2024). Zosuquidar: An Effective Molecule for Intracellular Ca2+ Measurement in P-gp Positive Cells. International journal of molecular sciences, 25(6), 3107. https://doi.org/10.3390/ijms25063107. DOI: https://doi.org/10.3390/ijms25063107
Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., et al. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of chemical physics, 153(4), 044130. https://doi.org/10.1063/5.0014475. DOI: https://doi.org/10.1063/5.0014475
Poulton, N. C., & Rock, J. M. (2022). Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Frontiers in cellular and infection microbiology, 12, 997283. https://doi.org/10.3389/fcimb.2022.997283. DOI: https://doi.org/10.3389/fcimb.2022.997283
Roberts A. G. (2021). The Structure and Mechanism of Drug Transporters. Methods in molecular biology (Clifton, N.J.), 2342, 193–234. https://doi.org/10.1007/978-1-0716-1554-6_8. DOI: https://doi.org/10.1007/978-1-0716-1554-6_8
Robey, R. W., Pluchino, K. M., Hall, M. D., Fojo, A. T., Bates, S. E., & Gottesman, M. M. (2018). Revisiting the role of ABC transporters in multidrug-resistant cancer. Nature reviews. Cancer, 18(7), 452–464. https://doi.org/10.1038/s41568-018-0005-8. DOI: https://doi.org/10.1038/s41568-018-0005-8
Rodrigues, L., Cravo, P., & Viveiros, M. (2020). Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: a new strategy to revisit mycobacterial targets and repurpose old drugs. Expert review of anti-infective therapy, 18(8), 741–757. https://doi.org/10.1080/14787210.2020.1760845.
Rodrigues, L., Cravo, P., & Viveiros, M. (2020). Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: a new strategy to revisit mycobacterial targets and repurpose old drugs. Expert review of anti-infective therapy, 18(8), 741–757. https://doi.org/10.1080/14787210.2020.1760845. DOI: https://doi.org/10.1080/14787210.2020.1760845
Seung, K. J., Keshavjee, S., & Rich, M. L. (2015). Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harbor perspectives in medicine, 5(9), a017863. https://doi.org/10.1101/cshperspect.a017863. DOI: https://doi.org/10.1101/cshperspect.a017863
Chang, D. P. S., & Guan, X. L. (2021). Metabolic Versatility of Mycobacterium tuberculosis during Infection and Dormancy. Metabolites, 11(2), 88. https://doi.org/10.3390/metabo11020088. DOI: https://doi.org/10.3390/metabo11020088
Shankaran, D., Singh, A., Dawa, S., Arumugam, P., Gandotra, S., & Rao, V. (2023). The antidepressant sertraline provides a novel host directed therapy module for augmenting TB therapy. eLife, 12, e64834. https://doi.org/10.7554/eLife.64834. DOI: https://doi.org/10.7554/eLife.64834
Sharma, K., Ahmed, F., Sharma, T., Grover, A., Agarwal, M., & Grover, S. (2023). Potential Repurposed Drug Candidates for Tuberculosis Treatment: Progress and Update of Drugs Identified in Over a Decade. ACS omega, 8(20), 17362–17380. https://doi.org/10.1021/acsomega.2c05511. DOI: https://doi.org/10.1021/acsomega.2c05511
Spengler, G., Kincses, A., Gajdács, M., & Amaral, L. (2017). New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules, 22 (3), 468. https://doi.org/10.3390/molecules22030468. DOI: https://doi.org/10.3390/molecules22030468
Srivastav, R., Kumar, D., Grover, A., Singh, A., Manjasetty, B. A., Sharma, R., & Taneja, B. (2014). Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases. Nucleic acids research, 42(12), 7894–7910. https://doi.org/10.1093/nar/gku425. DOI: https://doi.org/10.1093/nar/gku425
Srivastav, R., Sharma, R., Tandon, S., & Tandon, C. (2019). Role of DHH superfamily proteins in nucleic acids metabolism and stress tolerance in prokaryotes and eukaryotes. International journal of biological macromolecules, 127, 66–75. https://doi.org/10.1016/j.ijbiomac.2018.12.123. DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.123
Traoré, A. N., Rikhotso, M. C., Mphaphuli, M. A., Patel, S. M., Mahamud, H. A., Kachienga, L. O., Kabue, J. P., & Potgieter, N.
(2023). Isoniazid and Rifampicin Resistance-Conferring Mutations in Mycobacterium tuberculosis Isolates from South Africa. Pathogens (Basel, Switzerland), 12(8), 1015. https://doi.org/10.3390/pathogens12081015. DOI: https://doi.org/10.3390/pathogens12081015
Turner, A. P., Alam, C., & Bendayan, R. (2020). Efflux Transporters in Cancer Resistance: Molecular and Functional Characterization of P-Glycoprotein. In A. Sosnik, & R. Bendayan (Eds.) Drug Efflux Pumps in Cancer Resistance Pathways: From Molecular Recognition and Characterization to Possible Inhibition Strategies in Chemotherapy, Cancer Sensitizing Agents for Chemotherapy vol. 7 (pp. 1–30). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-816434-1.00001-2. DOI: https://doi.org/10.1016/B978-0-12-816434-1.00001-2
Tyagi, R., Srivastava, M., Jain, P., Pandey, R. P., Asthana, S., Kumar, D., & Raj, V. S. (2022). Development of potential proteasome inhibitors against Mycobacterium tuberculosis. Journal of biomolecular structure & dynamics, 40(5), 2189–2203. https://doi.org/10.1080/07391102.2020.1835722. DOI: https://doi.org/10.1080/07391102.2020.1835722
WHO. (2024). Global Tuberculosis Report 2024. Retrieved from https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024.
WHO Results Report 2020-2021. n.d. Retrieved from https://www.who.int/about/accountability/results/who-results-report-2020-2021. Accessed February 19, 2024.
Wilczek, N. A., Brzyska, A., Bogucka, J., Sielwanowska, W. E., Żybowska, M., Piecewicz-Szczęsna, H., & Smoleń, A. (2023). The Impact of the War in Ukraine on the Epidemiological Situation of Tuberculosis in Europe. Journal of clinical medicine, 12(20), 6554. https://doi.org/10.3390/jcm12206554. DOI: https://doi.org/10.3390/jcm12206554
Yang, J., Zhang, L., Qiao, W., & Luo, Y. (2023). Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm, 4(5), e353. https://doi.org/10.1002/mco2.353. DOI: https://doi.org/10.1002/mco2.353
Zgurskaya H. I. (2021). Introduction: Transporters, Porins, and Efflux Pumps. Chemical reviews, 121(9), 5095–5097. https://doi.org/10.1021/acs.chemrev.1c00010. DOI: https://doi.org/10.1021/acs.chemrev.1c00010
Zhao, J., Xie, H., Mehdipour, A. R., Safarian, S., Ermler, U., et al. (2021). The structure of the Aquifex aeolicus MATE family multidrug resistance transporter and sequence comparisons suggest the existence of a new subfamily. Proceedings of the National Academy of Sciences of the United States of America, 118(46), e2107335118. https://doi.org/10.1073/pnas.2107335118. DOI: https://doi.org/10.1073/pnas.2107335118
Downloads
Published
How to Cite
License
Copyright (c) 2025 Journal of Experimental Biology and Agricultural Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.