Influence of Zinc Oxide Nanoparticles on the Productivity, Mineral Element Accumulation, and Fruit Quality of Tomato (Solanum lycopersicum L.)
DOI:
https://doi.org/10.18006/2024.12(6).887.904Keywords:
Growth, Nutrient uptake, Profitability, Solanum lycopersicum, Yield traitsAbstract
Foliar application of zinc oxide nanoparticles (ZnO-NPs) is a promising strategy in modern agriculture. This method has shown significant potential in enhancing tomato yields, improving fruit quality, and increasing nutrient uptake. An experiment was conducted in cocopeat media under glasshouse conditions at Ladang 15, Universiti Putra Malaysia (UPM) in 2020 to evaluate the effectiveness of various doses of ZnO-NPs on plant growth, yield, nutrient uptake, and fruit quality in terms of profitability. A total of ten treatments were evaluated, consisting of five levels of ZnO-NPs (0 ppm, 25 ppm, 50 ppm, 75 ppm, and 100 ppm) and two tomato varieties (MARDI Tomato 1 and MARDI Tomato 3). The experiment utilized a split-plot design with four replications. The results indicated that the application of 100 ppm ZnO-NPs produced the maximum measures of plant growth and fruit quality, including the highest number of primary branches per plant (27.75), leaf area (27.80 cm²), photosynthetic rate (33.05 µmol/m²/s), stomatal conductance (1.01 mol/m²/s), fruit length (4.55 cm), fruit diameter (4.33 cm), number of fruits per plant (52.75), fruit yield (53.85 t/ha), ascorbic acid content (26.13 mg/100 g), zinc content in fruits (52.25 mg/kg), total zinc uptake (102.34 mg/plant), and a benefit-cost ratio of 3.39. Moreover, among the tested varieties, MT3 outperformed MT1. Therefore, a foliar application of 100 ppm ZnO-NPs is recommended as the optimal dose for tomato cultivation. This approach promotes healthier plants and superior fruit quality and supports more sustainable and productive agricultural practices while minimizing environmental harm. Additionally, further research is necessary to explore higher dosages of ZnO-NPs in tomato production to establish the best dose for optimizing output.
References
Abdelaziz, A. M., Dacrory, S., Hashem, A. H., Attia, M., Hasanin, M., Fouda, H. M., Kamel, S., & Elsaied, H. (2021). Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatalysis and Agricultural Biotechnology, 35(1–2), 083. DOI: https://doi.org/10.1016/j.bcab.2021.102083
Ahmed, R., Uddin, M. K., Quddus, M. A., Samad, M. Y. A., Hosain, M. A. M., & Haque, A. N. A. (2023). Impact of Foliar Application of Zinc and Zinc Oxide Nanoparticles on Growth, Yield, Nutrient Uptake and Quality of Tomato. Horticulturae, 9(2), 162. DOI: https://doi.org/10.3390/horticulturae9020162
Ahmed, R., Yusoff Abd Samad, M., Uddin, M.K., Quddus, M.A., & Hossain, M.A.M. (2021). Recent Trends in the Foliar Spraying of Zinc Nutrient and Zinc Oxide Nanoparticles in Tomato Production. Agronomy, 11, 2074. DOI: https://doi.org/10.3390/agronomy11102074
Ahsan, T., Li, B., Khalil, A., Zafar, T., & Razzaq, M. (2025). Impact of Alkalescent Nucleoside Antibiotic Loaded ZnONPs, on Enzymes, Hormones, Fatty Acids, and Metabolites in Rice Plant. Iranian Journal of Science, https://doi.org/10.1007/s40995-024-01743-4. DOI: https://doi.org/10.1007/s40995-024-01743-4
Ali, M.Y., Sina, A.A.I., Khandker, S.S., Neesa, L., Tanvir, E. M., Kabir, A., Khalil, M.I., & Gan, S.H. (2021). Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods, 10, 45. DOI: https://doi.org/10.3390/foods10010045
Alloway, B. J. (2008). Zinc in soils and crop nutrition. published by IZA and IFA. Brussels, Belgium and Paris, France, pp. 139.
Angyu, A. E., & Kwon-Ndung, E. H. (2024). Alpha-Spin-Mediated Growth Improvement for Tomato (Lycopersicon esculentum Mill.) Varieties in Jauro Yinu, Ardo-Kola LGA, Taraba State.Lafia Journal of Scientific & Industrial Research, 2(2), 96-100. DOI: https://doi.org/10.62050/ljsir2024.v2n2.330
Baligar, V. C., Fageria, N. K., & He, Z. L.(2001). Nutrient use efficiency in plants. Communication in Soil Science and Plant Analysis, 32(7&8), 921–950. DOI: https://doi.org/10.1081/CSS-100104098
Beckles, D.M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63 (1), 129-140. DOI: https://doi.org/10.1016/j.postharvbio.2011.05.016. DOI: https://doi.org/10.1016/j.postharvbio.2011.05.016
Benavides-Mendoza, A., Betancourt-Galindo, R., & Francisco-Francisco, N. (2023) Impact of ZnSO4- and ZnO Nanoparticles on Seed Germination and Seedling Growth of Lettuce. Phyton-International Journal of Experimental Botany, 92(6), 1831-1840. DOI: https://doi.org/10.32604/phyton.2023.028085
Ben-Rouina, B., Ben-Ahmed, C., Athar, H.U.R., & Boukhriss, M. (2006). Water relations, proline accumulation and photosynthetic activity in olive tree (Olea europaea L. CV" Chemlali") in response to salt stress. Pakistan Journal of Botany, 38(5 SPEC. ISS.), 1397-1406.
Chanu, T.T., & Upadhyaya, H. (2019). Zinc oxide nanoparticle-induced responses on plants: A physiological perspective. Nanomaterials in Plants, Algae and Microorganisms, 2, 43–64. DOI: https://doi.org/10.1016/B978-0-12-811488-9.00003-2
Cottenie, A. (1980) Soil and Plant Testing as a Basis of Fertilizer Recommendations. FAO Soil Bulletin 38/2. Food and Agriculture Organization of the United Nations, Rome.
Cox, D. (1995). Water quality: pH and alkalinity. University of Massachusetts Extension, Department of Plant and Soil Science, Massa.
Ding, P., & Mashah, N. C. (2016). Growth, maturation and ripening of underutilized Carissa congesta fruit. Fruits, 71(3), 171-176. DOI: https://doi.org/10.1051/fruits/2016005
Dong, H., Li, F., Xuan, X., Ahiakpa, J. K., Tao, J., Zhang, X., Ge, P., Wang, Y., Gai, W., & Zhang, Y. (2025). The genetic basis and improvement of photosynthesis in tomato. Horticultural Plant Journal,11 (1) 69-84. DOI: https://doi.org/10.1016/j.hpj.2023.06.007
Elia, A., & Conversa, G.(2012). Agronomic and physiological responses of a tomato crop to nitrogen input. European Journal of Agronomy, 40, 64-74. DOI: https://doi.org/10.1016/j.eja.2012.02.001
Faizan, M., Bhat, J. A., Chen, C., Alyemeni, M. N., Wijaya, L., Ahmad, P., & Yu, F. (2021). Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiology and Biochemistry, 161, 122-130. DOI: https://doi.org/10.1016/j.plaphy.2021.02.002
Faizan, M., & Hayat, S. (2019). Effect of foliar spray of ZnO-NPs on the physiological parameters and antioxidant systems of Lycopersicon esculentum. Polish Journal of Natural Sciences, 34(6), 87-105.
Fu, L., Wang, Z., Dhankher, O. P., & Xing, B. (2020). Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. Journal of Experimental Botany, 71(2), 507–519. DOI: https://doi.org/10.1093/jxb/erz314
Grzebisz, W., Wrońska, M., Diatta, J. B., & Dullin, P. (2008). Effect of zinc foliar application at early stages of maize growth on patterns of nutrients and dry matter accumulation by the canopy. Part I. Zinc uptake patterns and its redistribution among maize organs. Journal of Elementolgy,13, 17–28.
Gutiérrez-Miceli, F. A., Oliva-Llaven, M. Á., Luján-Hidalgo, M. C., Velázquez-Gamboa, M. C., González-Mendoza, D., & Sánchez-Roque, Y. (2021). Zinc oxide Phytonanoparticles' effects on yield and mineral contents in fruits of tomato (Solanum lycopersicum L. cv. Cherry) under field conditions. The Scientific World Journal, 2021(1), 5561930. DOI: https://doi.org/10.1155/2021/5561930
Hanif, M., Munir, N., Abideen, Z., Dias, D. A., Hessini, K., & El-Keblawy, A. (2023). Enhancing tomato plant growth in a saline environment through the eco-friendly synthesis and optimization of nanoparticles derived from halophytic sources. Environmental Science and Pollution Research, 30(56), 118830–118854. DOI: https://doi.org/10.1007/s11356-023-30626-1
Hiller, A., Plazin, J., & Vanslyke, D.D. (1948). A study of conditions of Kjeldhal determination of nitrogen inproteins. Journal of Biological Chemistry, 176(3), 1401-1420. DOI: https://doi.org/10.1016/S0021-9258(18)57154-4
Huang, Z., Xie,W., Wang, M., Liu, X., Ashraf, U., et al. (2020). Response of rice genotypes with differential nitrate reductase-dependent NO synthesis to melatonin under ZnO nanoparticles' (NPs) stress. Chemosphere, 250, 126337. DOI: https://doi.org/10.1016/j.chemosphere.2020.126337
Isah, A., Amans, E., Odion, E., & Yusuf, A. (2014). Growth rate and yield of two tomato varieties (Lycopersicon esculentum Mill) under green manure and NPK fertilizer rate Samaru Northern Guinea Savanna. International Journal of Agronomy, 2014(1), 932759. DOI: https://doi.org/10.1155/2014/932759
Islam, M. M., Karim, M. R., Oliver, M. M. H., Urmi, T. A., Hossain, M. A., & Haque, M. M. (2018). Impacts of trace element addition on lentil (Lens culinaris L.) agronomy. Agronomy, 8(7), 100. DOI: https://doi.org/10.3390/agronomy8070100
Jabri, H. A., Saleem, M. H., Rizwan, M., Hussain, I., Usman, K., & Alsafran, M. (2022).Zinc Oxide Nanoparticles and Their Biosynthesis: Overview. Life, 12, 594. DOI: https://doi.org/10.3390/life12040594
Jampı´lek, J.,& Kra´l’ova,´ K. (2021). Nanoparticles for improving and augmenting plant functions. In: S. Jogaiah, B. Singh, L.F., Fraceto, & R, de Lima (eds) Woodhead Publishing series in food science, technology and nutrition, advances in nano-fertilizers and nanopesticides in agriculture (pp. 171-227). Woodhead Publishing, India. DOI: https://doi.org/10.1016/B978-0-12-820092-6.00008-2
Kaya, C., & Higgs, D. (2002). Response of tomato (Lycopersicon esculentum L.) cultivars to foliar application of zinc when grown in sand culture at low zinc. Scientia Horticulturae, 93(1), 53-64. DOI: https://doi.org/10.1016/S0304-4238(01)00310-7
Keeney, D. R., & Nelson, D. W. (1982). Nitrogen—inorganic forms. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 643-698. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c33
Khan, M., Khan, M.S.A., Borah, K.K., Goswami, Y., Hakeem, K.R., & Chakrabartty, I. (2021). The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: A review. Environmental Advances, 6(80), 100128. DOI: https://doi.org/10.1016/j.envadv.2021.100128
Khanm, H., Vaishnavi, B., & Shankar, A. (2018). Raise of Nano-fertilizer ERA: Effect of nano scale zinc oxide particles on the germination, growth and yield of tomato (Solanum lycopersicum). International Journal of Current Microbiology and Applied Sciences, 7(5), 1861-1871. DOI: https://doi.org/10.20546/ijcmas.2018.705.219
Kondak, S., Molnar, A´ , Ola´h, D., & Kolbert, Z. (2022). The role of nitric oxide (NO) in plant responses to disturbed zinc homeostasis. Plant Stress, 4(1)), 100068. DOI: https://doi.org/10.1016/j.stress.2022.100068
Kumah, P., Olympio, N., & Tayviah, C. (2011). Sensitivity of three tomato (Lycopersicon esculentum) cultivars-Akoma, Pectomech and power-to chilling injury. Agriculture and Biology Journal of North America, 2, 799-805. DOI: https://doi.org/10.5251/abjna.2011.2.5.799.805
Kumar, U. J., Bahadur, V., Prasad, V., Mishra, S., & Shukla, P. (2017). Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of strawberry (Fragaria x ananassa Duch) cv. Chandler. International Journal of Current Microbiology and Applied Sciences, 6(8), 2440-2445. DOI: https://doi.org/10.20546/ijcmas.2017.608.288
Kwon-Ndung, E., Joseph, C., Goler, E. E., Kana, H., & Paul, T. T. (2019). Promising use of Alpha-Spin(r) nano particles bombardment for selection of useful variations in Moringa oleifera seedlings in Nigeria. International Journal of Innovative Approaches in Agricultural Research, 3(2), 202–209. DOI: https://doi.org/10.29329/ijiaar.2019.194.6
Maroušek, J., & Maroušková, A. (2021). Economic considerations on nutrient utilization in wastewater management. Energies, 14(12), 3468. DOI: https://doi.org/10.3390/en14123468
Mi, K., Yuan, X., Wang, Q., Dun, C., Wang, R., et al. (2023). Zinc oxide nanoparticles enhanced rice yield, quality, and zinc content of edible grain fraction synergistically. Frontiers in Plant Science, 14, 1196201. DOI: https://doi.org/10.3389/fpls.2023.1196201
Mohammadi-Aylar, S., Jamaati-e-Somarin, S., & Azimi, J. (2010). Effect of stage of ripening on mechanical damage in tomato fruits. American-Eurasian Journal of Agricultural & Environmental Science, 9, 297–302.
Mohan, A. C., & Renjanadevi, B. (2016). Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Procedia Technology, 24, 761-766. DOI: https://doi.org/10.1016/j.protcy.2016.05.078
Mubashir, A., Nisa, Z., Shah, A. A., Kiran, M., Hussain, I., et al. (2023). Effect of foliar application of nano-nutrients solution on growth and biochemical attributes of tomato (Solanum lycopersicum) under drought stress. Frontiers in Plant Science, 13, 1066790. DOI: https://doi.org/10.3389/fpls.2022.1066790
Munir, T., Rizwan, M., Kashif, M., Shahzad, A., Ali, S., & Amin, N.(2018). Effect of zinc oxide nanoparticles on the growth and zn uptake in wheat (Triticum aestivum l.) by seed priming method. Digest Journal of Nanomaterials & Biostructures, 13(1), 315-323.
Nagata, M., & Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon shokuhin kogyo gakkaishi, 39(10), 925-928. DOI: https://doi.org/10.3136/nskkk1962.39.925
Nirupama Pila, N. P., Gol, N. B., & Rao, T. R. (2010). Effect of post harvest treatments on physicochemical characteristics and shelf life of tomato (Lycopersicon esculentum Mill.) fruits during storage. American-Eurasian Journal of Agricultural & Environmental Sciences, 9(5), 470–479.
Olaniyi, J., Akanbi, W., Adejumo, T., & Akande, O. (2010). Growth, fruit yield and nutritional quality of tomato varieties. African journal of food science, 4(6), 398-402.
Pérez Velasco, E. A., Betancourt Galindo, R., Valdez Aguilar, L. A., Gonzalez Fuentes, J. A., Puente Urbina, B. A., Lozano Morales, S. A., & Sánchez Valdés, S. (2020). Effects of the morphology, surface modification and application methods of ZnO-NPs on the growth and biomass of tomato plants. Molecules, 25(6), 1282. DOI: https://doi.org/10.3390/molecules25061282
Pinela, J., Petropoulos, S. A., & Barros, L. (2022). Editorial: Advances in tomato and tomato compounds research and technology. Frontiers in Nutrition, 9,1018498. DOI: https://doi.org/10.3389/fnut.2022.1018498
Prasad, T., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., et al. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of plant nutrition, 35(6), 905-927. DOI: https://doi.org/10.1080/01904167.2012.663443
Quddus, M. A., Ahmed, R., Islam, M. S., Siddiky, M. A., & Rahman, M. A. (2023). Evaluation of potassium nutrition in productivity, quality and potassium use efficiency of garden pea in terrace soils. Bangladesh Journal of Agricultural Research, 48(3), 307-323.
Quddus, M.A., Siddiky, M.A., Ali, M.R., Ahmed, R., Sarker, K.K., & Arfin, M.S. (2022a). Influence of boron and zinc on yield, nutrient uptake and quality of strawberry, Journal of Plant Nutrition, 45 (6), 866-882. DOI: https://doi.org/10.1080/01904167.2021.1998528
Quddus, M. A., Siddiky, M. A., Hussain, M. J., Rahman, M. A., Ali, M. R., & Masud, M. A. T. (2022b). Magnesium influences growth, yield, nutrient uptake, and fruit quality of tomato. International Journal of Vegetable Science, 28(5), 441-464. DOI: https://doi.org/10.1080/19315260.2021.2014614
Quddus, M. A., Anwar, M. B., Naser, H. M., Siddiky, M. A., Hussain, M. J., et al. (2020). Impact of zinc, boron and molybdenum addition in soil on mungbean productivity, nutrient uptake and economics. Journal of Agricultural Science, 12 (9), 115-129. DOI: https://doi.org/10.5539/jas.v12n9p115
Raliya, R., Nair, R., Chavalmane, S., Wang, W.N., & Biswas, P. (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7(12), 1584-1594. DOI: https://doi.org/10.1039/C5MT00168D
Razzaque, M., Haque, M., Rahman, M., Bazzaz, M., & Khan, M. (2016). Screening of mungbean (Vigna radiata L. Wilczek) genotypes under nutrient stress in soil. Bangladesh Journal. Agricultural Research, 41, 377-386. DOI: https://doi.org/10.3329/bjar.v41i2.28239
Rehman, F., Paker, N. P., Khan, M., Zainab, N., Ali, N., Munis, M. F. H., Iftikhar, M., & Chaudhary, H. J. (2023). Assessment of application of ZnO nanoparticles on physiological profile, root architecture and antioxidant potential of Solanum lycopersicum. Biocatalysis and Agricultural Biotechnology, 53, 102874. DOI: https://doi.org/10.1016/j.bcab.2023.102874
Rengel, Z., Römheld, V., & Marschner, H. (1998). Uptake of zinc and iron by wheat genotypes differing in tolerance to zinc deficiency. Journal of Plant Physiology, 152(4-5), 433-438. DOI: https://doi.org/10.1016/S0176-1617(98)80260-5
Saleem, M. H., Usman, K., Rizwan, M., Jabri, H. A., & Alsafran, M. (2022). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092. DOI: https://doi.org/10.3389/fpls.2022.1033092
Seleiman, M. F., Ahmad, A., Alhammad, B. A., & Tola, E. (2023). Exogenous Application of Zinc Oxide Nanoparticles Improved Antioxidants, Photosynthetic, and Yield Traits in Salt-Stressed Maize. Agronomy, 13(10), 2645. DOI: https://doi.org/10.3390/agronomy13102645
Shamshuddin, J., Rabileh, M. A., & Fauziah, C. I. (2020). Can the Acidic Ultisols in Peninsular Malaysia Be Alleviated by Biochar Treatment for Corn Cultivation? Malaysian Journal of Soil Science, 24, 1–10.
Sharma, N. K., Singh, R. J., & Kumar, K. (2012). Dry matter accumulation and nutrient uptake by wheat under poplar based agroforestry system. Agronomy, 2012(1), 1–7. DOI: https://doi.org/10.5402/2012/359673
Siva Prasad, P. N., Subbarayappa, C. T., Sathish, A., & Ramamurthy, V. (2021). Impact of zinc fertilization on tomato (Solanum lycopersicum L.) yield, zinc use efficiency, growth and quality parameters in Eastern Dry Zone (EDZ) soils of Karnataka, India. International Journal of Plant & Soil Science, 33, 20–38. DOI: https://doi.org/10.9734/ijpss/2021/v33i730447
Sofy, A. R., Sofy, M. R., Hmed, A. A., Dawoud, R. A., Alnaggar, A. E.A. M., Soliman, A. M., & El-Dougdoug, N. K. (2021). Ameliorating the adverse effects of tomato mosaic tobamovirus
infecting tomato plants in Egypt by boosting immunity in tomato plants using zinc oxide nanoparticles. Molecules, 26(5), 1337. DOI: https://doi.org/10.3390/molecules26051337
Su, Y., Ashworth, V., Kim, C., Adeleye, A.S., Rolshausen, P., Roper, C., White, J., & Jassby, D. (2019). Delivery, uptake, fate, and transport of engineered nanoparticles in plants: A critical review and data analysis. Environmental Science. Nano, 6(8), 2311–2331. DOI: https://doi.org/10.1039/C9EN00461K
Sun, L., Wang, Y., Wang, R., Wang, R., Zhang, P., Ju, Q., & Xu, J. (2020). Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environmental Science: Nano, 7(11), 3587-3604. DOI: https://doi.org/10.1039/D0EN00723D
Tondey, M., Kalia, A., Singh, A., Dheri, G. S., Taggar, M. S., Neovimova, E., Krejcar, O., & Kuca, K. (2021). Seed priming and coating by nanoscale zinc oxide particles improved vegetative growth, yield and quality of fodder maize (Zea mays). Agronomy, 11(4), 729. DOI: https://doi.org/10.3390/agronomy11040729
Tujuba, M., & Ayana, N. G. (2020). Evaluation of released tomato (Lycopersicon Esculentum Mill.) varieties for fruit yield quality parameters in Western Ethiopia. Journal of Agricultural and Biological Science, 6(2), 100-113.
Vasconcelos, A. D., Nascimento, C. W. A., & Cunha Filho, F. D. (2011). Distribution of zinc in maize plants as a function of soil and foliar Zn supply. International Research Journal of Agricultural Science and Soil Science, 1(1), 1-5.
Wang, J., Xu, J., Xie, R., Chen, N., Yang, M., Tian, X., & Shi, D. (2024). Effects of nano oxide particles on the growth and photosynthetic characteristics of okra plant under water deficiency. Folia Horticulturae, 36(3), 1-13. DOI: https://doi.org/10.2478/fhort-2024-0029
Wang, Q., Xu, S., Zhong, L., Zhao, X., & Wang, L. (2023). Effects of Zinc Oxide Nanoparticles on Growth, Development, and Flavonoid Synthesis in Ginkgo biloba. International Journal of Molecular Sciences, 24(21), 15775. DOI: https://doi.org/10.3390/ijms242115775
Włodarczyk, K., Smolińska, B., & Majak, I. (2024). How Nano-ZnO Affect Tomato Fruits (Solanum lycopersicum L.)? Analysis of Selected Fruit Parameters. International Journal of Molecular Science, 25, 8522. DOI: https://doi.org/10.3390/ijms25158522
Włodarczyk, K., & Smolińska,B. (2022). The Effect of Nano-ZnO on Seeds Germination Parameters of Different Tomatoes (Solanum lycopersicum L.) Cultivars. Molecules, 27(15), 4963. DOI: https://doi.org/10.3390/molecules27154963
Downloads
Published
How to Cite
License
Copyright (c) 2025 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.