Influence of Zinc Oxide Nanoparticles on the Productivity, Mineral Element Accumulation, and Fruit Quality of Tomato (Solanum lycopersicum L.)

Authors

  • Razu Ahmed Soil and Water Management Section, HRC, Bangladesh Agricultural Research Institute, Gazipur-1701, Bangladesh https://orcid.org/0009-0002-2012-1179
  • Md. Abdul Quddus Soil and Water Management Section, HRC, Bangladesh Agricultural Research Institute, Gazipur-1701, Bangladesh https://orcid.org/0000-0001-6682-9899
  • Md. Kamal Uddin Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43200, Malaysia https://orcid.org/0000-0002-5869-6368
  • Susilawati Binti Kasim Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43200, Malaysia
  • Khairul Hafiz bin MohdYusoff Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43200, Malaysia
  • M. A. Motalib Hossain Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000, Kajang, Malaysia https://orcid.org/0000-0003-2590-5394
  • Zakaria Solaiman The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
  • Ahmad Numery Ashfaqul Haque Bangladesh Agricultural Research Council(BARC), Dhaka, Bangladesh https://orcid.org/0000-0002-5273-6592

DOI:

https://doi.org/10.18006/2024.12(6).887.904

Keywords:

Growth, Nutrient uptake, Profitability, Solanum lycopersicum, Yield traits

Abstract

Foliar application of zinc oxide nanoparticles (ZnO-NPs) is a promising strategy in modern agriculture. This method has shown significant potential in enhancing tomato yields, improving fruit quality, and increasing nutrient uptake. An experiment was conducted in cocopeat media under glasshouse conditions at Ladang 15, Universiti Putra Malaysia (UPM) in 2020 to evaluate the effectiveness of various doses of ZnO-NPs on plant growth, yield, nutrient uptake, and fruit quality in terms of profitability. A total of ten treatments were evaluated, consisting of five levels of ZnO-NPs (0 ppm, 25 ppm, 50 ppm, 75 ppm, and 100 ppm) and two tomato varieties (MARDI Tomato 1 and MARDI Tomato 3). The experiment utilized a split-plot design with four replications. The results indicated that the application of 100 ppm ZnO-NPs produced the maximum measures of plant growth and fruit quality, including the highest number of primary branches per plant (27.75), leaf area (27.80 cm²), photosynthetic rate (33.05 µmol/m²/s), stomatal conductance (1.01 mol/m²/s), fruit length (4.55 cm), fruit diameter (4.33 cm), number of fruits per plant (52.75), fruit yield (53.85 t/ha), ascorbic acid content (26.13 mg/100 g), zinc content in fruits (52.25 mg/kg), total zinc uptake (102.34 mg/plant), and a benefit-cost ratio of 3.39. Moreover, among the tested varieties, MT3 outperformed MT1. Therefore, a foliar application of 100 ppm ZnO-NPs is recommended as the optimal dose for tomato cultivation. This approach promotes healthier plants and superior fruit quality and supports more sustainable and productive agricultural practices while minimizing environmental harm. Additionally, further research is necessary to explore higher dosages of ZnO-NPs in tomato production to establish the best dose for optimizing output.

Author Biographies

Razu Ahmed, Soil and Water Management Section, HRC, Bangladesh Agricultural Research Institute, Gazipur-1701, Bangladesh

Soil and Water Management Section, HRC, Bangladesh Agricultural Research Institute, Gazipur-1701, Bangladesh

Md. Abdul Quddus, Soil and Water Management Section, HRC, Bangladesh Agricultural Research Institute, Gazipur-1701, Bangladesh

Soil and Water Management Section, HRC, Bangladesh Agricultural Research Institute, Gazipur-1701, Bangladesh

Md. Kamal Uddin, Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43200, Malaysia

Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43200, Malaysia

Susilawati Binti Kasim, Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43200, Malaysia

Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43200, Malaysia

Khairul Hafiz bin MohdYusoff, Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43200, Malaysia

Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43200, Malaysia

M. A. Motalib Hossain, Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000, Kajang, Malaysia

Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000, Kajang, Malaysia

Zakaria Solaiman, The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia

The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia

Ahmad Numery Ashfaqul Haque, Bangladesh Agricultural Research Council(BARC), Dhaka, Bangladesh

Bangladesh Agricultural Research Council(BARC), Dhaka, Bangladesh

References

Abdelaziz, A. M., Dacrory, S., Hashem, A. H., Attia, M., Hasanin, M., Fouda, H. M., Kamel, S., & Elsaied, H. (2021). Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatalysis and Agricultural Biotechnology, 35(1–2), 083. DOI: https://doi.org/10.1016/j.bcab.2021.102083

Ahmed, R., Uddin, M. K., Quddus, M. A., Samad, M. Y. A., Hosain, M. A. M., & Haque, A. N. A. (2023). Impact of Foliar Application of Zinc and Zinc Oxide Nanoparticles on Growth, Yield, Nutrient Uptake and Quality of Tomato. Horticulturae, 9(2), 162. DOI: https://doi.org/10.3390/horticulturae9020162

Ahmed, R., Yusoff Abd Samad, M., Uddin, M.K., Quddus, M.A., & Hossain, M.A.M. (2021). Recent Trends in the Foliar Spraying of Zinc Nutrient and Zinc Oxide Nanoparticles in Tomato Production. Agronomy, 11, 2074. DOI: https://doi.org/10.3390/agronomy11102074

Ahsan, T., Li, B., Khalil, A., Zafar, T., & Razzaq, M. (2025). Impact of Alkalescent Nucleoside Antibiotic Loaded ZnONPs, on Enzymes, Hormones, Fatty Acids, and Metabolites in Rice Plant. Iranian Journal of Science, https://doi.org/10.1007/s40995-024-01743-4. DOI: https://doi.org/10.1007/s40995-024-01743-4

Ali, M.Y., Sina, A.A.I., Khandker, S.S., Neesa, L., Tanvir, E. M., Kabir, A., Khalil, M.I., & Gan, S.H. (2021). Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods, 10, 45. DOI: https://doi.org/10.3390/foods10010045

Alloway, B. J. (2008). Zinc in soils and crop nutrition. published by IZA and IFA. Brussels, Belgium and Paris, France, pp. 139.

Angyu, A. E., & Kwon-Ndung, E. H. (2024). Alpha-Spin-Mediated Growth Improvement for Tomato (Lycopersicon esculentum Mill.) Varieties in Jauro Yinu, Ardo-Kola LGA, Taraba State.Lafia Journal of Scientific & Industrial Research, 2(2), 96-100. DOI: https://doi.org/10.62050/ljsir2024.v2n2.330

Baligar, V. C., Fageria, N. K., & He, Z. L.(2001). Nutrient use efficiency in plants. Communication in Soil Science and Plant Analysis, 32(7&8), 921–950. DOI: https://doi.org/10.1081/CSS-100104098

Beckles, D.M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63 (1), 129-140. DOI: https://doi.org/10.1016/j.postharvbio.2011.05.016. DOI: https://doi.org/10.1016/j.postharvbio.2011.05.016

Benavides-Mendoza, A., Betancourt-Galindo, R., & Francisco-Francisco, N. (2023) Impact of ZnSO4- and ZnO Nanoparticles on Seed Germination and Seedling Growth of Lettuce. Phyton-International Journal of Experimental Botany, 92(6), 1831-1840. DOI: https://doi.org/10.32604/phyton.2023.028085

Ben-Rouina, B., Ben-Ahmed, C., Athar, H.U.R., & Boukhriss, M. (2006). Water relations, proline accumulation and photosynthetic activity in olive tree (Olea europaea L. CV" Chemlali") in response to salt stress. Pakistan Journal of Botany, 38(5 SPEC. ISS.), 1397-1406.

Chanu, T.T., & Upadhyaya, H. (2019). Zinc oxide nanoparticle-induced responses on plants: A physiological perspective. Nanomaterials in Plants, Algae and Microorganisms, 2, 43–64. DOI: https://doi.org/10.1016/B978-0-12-811488-9.00003-2

Cottenie, A. (1980) Soil and Plant Testing as a Basis of Fertilizer Recommendations. FAO Soil Bulletin 38/2. Food and Agriculture Organization of the United Nations, Rome.

Cox, D. (1995). Water quality: pH and alkalinity. University of Massachusetts Extension, Department of Plant and Soil Science, Massa.

Ding, P., & Mashah, N. C. (2016). Growth, maturation and ripening of underutilized Carissa congesta fruit. Fruits, 71(3), 171-176. DOI: https://doi.org/10.1051/fruits/2016005

Dong, H., Li, F., Xuan, X., Ahiakpa, J. K., Tao, J., Zhang, X., Ge, P., Wang, Y., Gai, W., & Zhang, Y. (2025). The genetic basis and improvement of photosynthesis in tomato. Horticultural Plant Journal,11 (1) 69-84. DOI: https://doi.org/10.1016/j.hpj.2023.06.007

Elia, A., & Conversa, G.(2012). Agronomic and physiological responses of a tomato crop to nitrogen input. European Journal of Agronomy, 40, 64-74. DOI: https://doi.org/10.1016/j.eja.2012.02.001

Faizan, M., Bhat, J. A., Chen, C., Alyemeni, M. N., Wijaya, L., Ahmad, P., & Yu, F. (2021). Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiology and Biochemistry, 161, 122-130. DOI: https://doi.org/10.1016/j.plaphy.2021.02.002

Faizan, M., & Hayat, S. (2019). Effect of foliar spray of ZnO-NPs on the physiological parameters and antioxidant systems of Lycopersicon esculentum. Polish Journal of Natural Sciences, 34(6), 87-105.

Fu, L., Wang, Z., Dhankher, O. P., & Xing, B. (2020). Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. Journal of Experimental Botany, 71(2), 507–519. DOI: https://doi.org/10.1093/jxb/erz314

Grzebisz, W., Wrońska, M., Diatta, J. B., & Dullin, P. (2008). Effect of zinc foliar application at early stages of maize growth on patterns of nutrients and dry matter accumulation by the canopy. Part I. Zinc uptake patterns and its redistribution among maize organs. Journal of Elementolgy,13, 17–28.

Gutiérrez-Miceli, F. A., Oliva-Llaven, M. Á., Luján-Hidalgo, M. C., Velázquez-Gamboa, M. C., González-Mendoza, D., & Sánchez-Roque, Y. (2021). Zinc oxide Phytonanoparticles' effects on yield and mineral contents in fruits of tomato (Solanum lycopersicum L. cv. Cherry) under field conditions. The Scientific World Journal, 2021(1), 5561930. DOI: https://doi.org/10.1155/2021/5561930

Hanif, M., Munir, N., Abideen, Z., Dias, D. A., Hessini, K., & El-Keblawy, A. (2023). Enhancing tomato plant growth in a saline environment through the eco-friendly synthesis and optimization of nanoparticles derived from halophytic sources. Environmental Science and Pollution Research, 30(56), 118830–118854. DOI: https://doi.org/10.1007/s11356-023-30626-1

Hiller, A., Plazin, J., & Vanslyke, D.D. (1948). A study of conditions of Kjeldhal determination of nitrogen inproteins. Journal of Biological Chemistry, 176(3), 1401-1420. DOI: https://doi.org/10.1016/S0021-9258(18)57154-4

Huang, Z., Xie,W., Wang, M., Liu, X., Ashraf, U., et al. (2020). Response of rice genotypes with differential nitrate reductase-dependent NO synthesis to melatonin under ZnO nanoparticles' (NPs) stress. Chemosphere, 250, 126337. DOI: https://doi.org/10.1016/j.chemosphere.2020.126337

Isah, A., Amans, E., Odion, E., & Yusuf, A. (2014). Growth rate and yield of two tomato varieties (Lycopersicon esculentum Mill) under green manure and NPK fertilizer rate Samaru Northern Guinea Savanna. International Journal of Agronomy, 2014(1), 932759. DOI: https://doi.org/10.1155/2014/932759

Islam, M. M., Karim, M. R., Oliver, M. M. H., Urmi, T. A., Hossain, M. A., & Haque, M. M. (2018). Impacts of trace element addition on lentil (Lens culinaris L.) agronomy. Agronomy, 8(7), 100. DOI: https://doi.org/10.3390/agronomy8070100

Jabri, H. A., Saleem, M. H., Rizwan, M., Hussain, I., Usman, K., & Alsafran, M. (2022).Zinc Oxide Nanoparticles and Their Biosynthesis: Overview. Life, 12, 594. DOI: https://doi.org/10.3390/life12040594

Jampı´lek, J.,& Kra´l’ova,´ K. (2021). Nanoparticles for improving and augmenting plant functions. In: S. Jogaiah, B. Singh, L.F., Fraceto, & R, de Lima (eds) Woodhead Publishing series in food science, technology and nutrition, advances in nano-fertilizers and nanopesticides in agriculture (pp. 171-227). Woodhead Publishing, India. DOI: https://doi.org/10.1016/B978-0-12-820092-6.00008-2

Kaya, C., & Higgs, D. (2002). Response of tomato (Lycopersicon esculentum L.) cultivars to foliar application of zinc when grown in sand culture at low zinc. Scientia Horticulturae, 93(1), 53-64. DOI: https://doi.org/10.1016/S0304-4238(01)00310-7

Keeney, D. R., & Nelson, D. W. (1982). Nitrogen—inorganic forms. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 643-698. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c33

Khan, M., Khan, M.S.A., Borah, K.K., Goswami, Y., Hakeem, K.R., & Chakrabartty, I. (2021). The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: A review. Environmental Advances, 6(80), 100128. DOI: https://doi.org/10.1016/j.envadv.2021.100128

Khanm, H., Vaishnavi, B., & Shankar, A. (2018). Raise of Nano-fertilizer ERA: Effect of nano scale zinc oxide particles on the germination, growth and yield of tomato (Solanum lycopersicum). International Journal of Current Microbiology and Applied Sciences, 7(5), 1861-1871. DOI: https://doi.org/10.20546/ijcmas.2018.705.219

Kondak, S., Molnar, A´ , Ola´h, D., & Kolbert, Z. (2022). The role of nitric oxide (NO) in plant responses to disturbed zinc homeostasis. Plant Stress, 4(1)), 100068. DOI: https://doi.org/10.1016/j.stress.2022.100068

Kumah, P., Olympio, N., & Tayviah, C. (2011). Sensitivity of three tomato (Lycopersicon esculentum) cultivars-Akoma, Pectomech and power-to chilling injury. Agriculture and Biology Journal of North America, 2, 799-805. DOI: https://doi.org/10.5251/abjna.2011.2.5.799.805

Kumar, U. J., Bahadur, V., Prasad, V., Mishra, S., & Shukla, P. (2017). Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of strawberry (Fragaria x ananassa Duch) cv. Chandler. International Journal of Current Microbiology and Applied Sciences, 6(8), 2440-2445. DOI: https://doi.org/10.20546/ijcmas.2017.608.288

Kwon-Ndung, E., Joseph, C., Goler, E. E., Kana, H., & Paul, T. T. (2019). Promising use of Alpha-Spin(r) nano particles bombardment for selection of useful variations in Moringa oleifera seedlings in Nigeria. International Journal of Innovative Approaches in Agricultural Research, 3(2), 202–209. DOI: https://doi.org/10.29329/ijiaar.2019.194.6

Maroušek, J., & Maroušková, A. (2021). Economic considerations on nutrient utilization in wastewater management. Energies, 14(12), 3468. DOI: https://doi.org/10.3390/en14123468

Mi, K., Yuan, X., Wang, Q., Dun, C., Wang, R., et al. (2023). Zinc oxide nanoparticles enhanced rice yield, quality, and zinc content of edible grain fraction synergistically. Frontiers in Plant Science, 14, 1196201. DOI: https://doi.org/10.3389/fpls.2023.1196201

Mohammadi-Aylar, S., Jamaati-e-Somarin, S., & Azimi, J. (2010). Effect of stage of ripening on mechanical damage in tomato fruits. American-Eurasian Journal of Agricultural & Environmental Science, 9, 297–302.

Mohan, A. C., & Renjanadevi, B. (2016). Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Procedia Technology, 24, 761-766. DOI: https://doi.org/10.1016/j.protcy.2016.05.078

Mubashir, A., Nisa, Z., Shah, A. A., Kiran, M., Hussain, I., et al. (2023). Effect of foliar application of nano-nutrients solution on growth and biochemical attributes of tomato (Solanum lycopersicum) under drought stress. Frontiers in Plant Science, 13, 1066790. DOI: https://doi.org/10.3389/fpls.2022.1066790

Munir, T., Rizwan, M., Kashif, M., Shahzad, A., Ali, S., & Amin, N.(2018). Effect of zinc oxide nanoparticles on the growth and zn uptake in wheat (Triticum aestivum l.) by seed priming method. Digest Journal of Nanomaterials & Biostructures, 13(1), 315-323.

Nagata, M., & Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon shokuhin kogyo gakkaishi, 39(10), 925-928. DOI: https://doi.org/10.3136/nskkk1962.39.925

Nirupama Pila, N. P., Gol, N. B., & Rao, T. R. (2010). Effect of post harvest treatments on physicochemical characteristics and shelf life of tomato (Lycopersicon esculentum Mill.) fruits during storage. American-Eurasian Journal of Agricultural & Environmental Sciences, 9(5), 470–479.

Olaniyi, J., Akanbi, W., Adejumo, T., & Akande, O. (2010). Growth, fruit yield and nutritional quality of tomato varieties. African journal of food science, 4(6), 398-402.

Pérez Velasco, E. A., Betancourt Galindo, R., Valdez Aguilar, L. A., Gonzalez Fuentes, J. A., Puente Urbina, B. A., Lozano Morales, S. A., & Sánchez Valdés, S. (2020). Effects of the morphology, surface modification and application methods of ZnO-NPs on the growth and biomass of tomato plants. Molecules, 25(6), 1282. DOI: https://doi.org/10.3390/molecules25061282

Pinela, J., Petropoulos, S. A., & Barros, L. (2022). Editorial: Advances in tomato and tomato compounds research and technology. Frontiers in Nutrition, 9,1018498. DOI: https://doi.org/10.3389/fnut.2022.1018498

Prasad, T., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., et al. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of plant nutrition, 35(6), 905-927. DOI: https://doi.org/10.1080/01904167.2012.663443

Quddus, M. A., Ahmed, R., Islam, M. S., Siddiky, M. A., & Rahman, M. A. (2023). Evaluation of potassium nutrition in productivity, quality and potassium use efficiency of garden pea in terrace soils. Bangladesh Journal of Agricultural Research, 48(3), 307-323.

Quddus, M.A., Siddiky, M.A., Ali, M.R., Ahmed, R., Sarker, K.K., & Arfin, M.S. (2022a). Influence of boron and zinc on yield, nutrient uptake and quality of strawberry, Journal of Plant Nutrition, 45 (6), 866-882. DOI: https://doi.org/10.1080/01904167.2021.1998528

Quddus, M. A., Siddiky, M. A., Hussain, M. J., Rahman, M. A., Ali, M. R., & Masud, M. A. T. (2022b). Magnesium influences growth, yield, nutrient uptake, and fruit quality of tomato. International Journal of Vegetable Science, 28(5), 441-464. DOI: https://doi.org/10.1080/19315260.2021.2014614

Quddus, M. A., Anwar, M. B., Naser, H. M., Siddiky, M. A., Hussain, M. J., et al. (2020). Impact of zinc, boron and molybdenum addition in soil on mungbean productivity, nutrient uptake and economics. Journal of Agricultural Science, 12 (9), 115-129. DOI: https://doi.org/10.5539/jas.v12n9p115

Raliya, R., Nair, R., Chavalmane, S., Wang, W.N., & Biswas, P. (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7(12), 1584-1594. DOI: https://doi.org/10.1039/C5MT00168D

Razzaque, M., Haque, M., Rahman, M., Bazzaz, M., & Khan, M. (2016). Screening of mungbean (Vigna radiata L. Wilczek) genotypes under nutrient stress in soil. Bangladesh Journal. Agricultural Research, 41, 377-386. DOI: https://doi.org/10.3329/bjar.v41i2.28239

Rehman, F., Paker, N. P., Khan, M., Zainab, N., Ali, N., Munis, M. F. H., Iftikhar, M., & Chaudhary, H. J. (2023). Assessment of application of ZnO nanoparticles on physiological profile, root architecture and antioxidant potential of Solanum lycopersicum. Biocatalysis and Agricultural Biotechnology, 53, 102874. DOI: https://doi.org/10.1016/j.bcab.2023.102874

Rengel, Z., Römheld, V., & Marschner, H. (1998). Uptake of zinc and iron by wheat genotypes differing in tolerance to zinc deficiency. Journal of Plant Physiology, 152(4-5), 433-438. DOI: https://doi.org/10.1016/S0176-1617(98)80260-5

Saleem, M. H., Usman, K., Rizwan, M., Jabri, H. A., & Alsafran, M. (2022). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092. DOI: https://doi.org/10.3389/fpls.2022.1033092

Seleiman, M. F., Ahmad, A., Alhammad, B. A., & Tola, E. (2023). Exogenous Application of Zinc Oxide Nanoparticles Improved Antioxidants, Photosynthetic, and Yield Traits in Salt-Stressed Maize. Agronomy, 13(10), 2645. DOI: https://doi.org/10.3390/agronomy13102645

Shamshuddin, J., Rabileh, M. A., & Fauziah, C. I. (2020). Can the Acidic Ultisols in Peninsular Malaysia Be Alleviated by Biochar Treatment for Corn Cultivation? Malaysian Journal of Soil Science, 24, 1–10.

Sharma, N. K., Singh, R. J., & Kumar, K. (2012). Dry matter accumulation and nutrient uptake by wheat under poplar based agroforestry system. Agronomy, 2012(1), 1–7. DOI: https://doi.org/10.5402/2012/359673

Siva Prasad, P. N., Subbarayappa, C. T., Sathish, A., & Ramamurthy, V. (2021). Impact of zinc fertilization on tomato (Solanum lycopersicum L.) yield, zinc use efficiency, growth and quality parameters in Eastern Dry Zone (EDZ) soils of Karnataka, India. International Journal of Plant & Soil Science, 33, 20–38. DOI: https://doi.org/10.9734/ijpss/2021/v33i730447

Sofy, A. R., Sofy, M. R., Hmed, A. A., Dawoud, R. A., Alnaggar, A. E.A. M., Soliman, A. M., & El-Dougdoug, N. K. (2021). Ameliorating the adverse effects of tomato mosaic tobamovirus

infecting tomato plants in Egypt by boosting immunity in tomato plants using zinc oxide nanoparticles. Molecules, 26(5), 1337. DOI: https://doi.org/10.3390/molecules26051337

Su, Y., Ashworth, V., Kim, C., Adeleye, A.S., Rolshausen, P., Roper, C., White, J., & Jassby, D. (2019). Delivery, uptake, fate, and transport of engineered nanoparticles in plants: A critical review and data analysis. Environmental Science. Nano, 6(8), 2311–2331. DOI: https://doi.org/10.1039/C9EN00461K

Sun, L., Wang, Y., Wang, R., Wang, R., Zhang, P., Ju, Q., & Xu, J. (2020). Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environmental Science: Nano, 7(11), 3587-3604. DOI: https://doi.org/10.1039/D0EN00723D

Tondey, M., Kalia, A., Singh, A., Dheri, G. S., Taggar, M. S., Neovimova, E., Krejcar, O., & Kuca, K. (2021). Seed priming and coating by nanoscale zinc oxide particles improved vegetative growth, yield and quality of fodder maize (Zea mays). Agronomy, 11(4), 729. DOI: https://doi.org/10.3390/agronomy11040729

Tujuba, M., & Ayana, N. G. (2020). Evaluation of released tomato (Lycopersicon Esculentum Mill.) varieties for fruit yield quality parameters in Western Ethiopia. Journal of Agricultural and Biological Science, 6(2), 100-113.

Vasconcelos, A. D., Nascimento, C. W. A., & Cunha Filho, F. D. (2011). Distribution of zinc in maize plants as a function of soil and foliar Zn supply. International Research Journal of Agricultural Science and Soil Science, 1(1), 1-5.

Wang, J., Xu, J., Xie, R., Chen, N., Yang, M., Tian, X., & Shi, D. (2024). Effects of nano oxide particles on the growth and photosynthetic characteristics of okra plant under water deficiency. Folia Horticulturae, 36(3), 1-13. DOI: https://doi.org/10.2478/fhort-2024-0029

Wang, Q., Xu, S., Zhong, L., Zhao, X., & Wang, L. (2023). Effects of Zinc Oxide Nanoparticles on Growth, Development, and Flavonoid Synthesis in Ginkgo biloba. International Journal of Molecular Sciences, 24(21), 15775. DOI: https://doi.org/10.3390/ijms242115775

Włodarczyk, K., Smolińska, B., & Majak, I. (2024). How Nano-ZnO Affect Tomato Fruits (Solanum lycopersicum L.)? Analysis of Selected Fruit Parameters. International Journal of Molecular Science, 25, 8522. DOI: https://doi.org/10.3390/ijms25158522

Włodarczyk, K., & Smolińska,B. (2022). The Effect of Nano-ZnO on Seeds Germination Parameters of Different Tomatoes (Solanum lycopersicum L.) Cultivars. Molecules, 27(15), 4963. DOI: https://doi.org/10.3390/molecules27154963

Downloads

Published

2025-01-15

How to Cite

Ahmed, R., Quddus, M. A., Uddin, M. K., Kasim, S. B., MohdYusoff, K. H. bin, Hossain, M. A. M., Solaiman, Z., & Haque, A. N. A. (2025). Influence of Zinc Oxide Nanoparticles on the Productivity, Mineral Element Accumulation, and Fruit Quality of Tomato (Solanum lycopersicum L.). Journal of Experimental Biology and Agricultural Sciences, 12(6), 887–904. https://doi.org/10.18006/2024.12(6).887.904

Issue

Section

RESEARCH ARTICLES

Categories