An intensive study on pesticides contamination and its removal in fruits and vegetables collected from Ghaziabad, India
DOI:
https://doi.org/10.18006/2022.10(1).104.116Keywords:
Pesticide residue, Fruits and vegetables, QUECHERS extraction, Translocation, DMRT, Washing solutionAbstract
These days pesticides are extensively applied in agriculture to increase productivity; although these pesticides increase productivity but also have a negative impact on the consumer. Thus, pesticide exposure in agricultural products must be decreased. The present study attempted to assess pesticide residues in samples of apple, tomato, and brinjal and determine the efficacy of washing solutions in pesticide removal. For sample preparation, the QuEChERS method was employed, and prepared samples were analyzed using gas chromatography-mass spectrometry. Results of the study revealed that among the collected samples, 58.33 percent samples were showing lower pesticide residues as compared to the maximum residue limit (MRL) while 12.5 percent of the samples were showing higher pesticides residues as compared to the suggested MRL. Further, from the collected fruits and vegetable samples, the presence of the chlorantraniliprole, carbendazim, beta endosulfan, chlorpyrifos, malathion, carbaryl, thiomethoxam, DDT, and flubendiamide were detected in the range of 0.0–1.41 mg/kg. Among the detected pesticides, chlorpyrifos and flubendiamide were the most commonly detected pesticides. Effectiveness of different washing solutions was studied, which indicated a significant reduction in residues of all the washing solutions compared with the control (p < 0.05) and concluded that ascorbic acid and sodium bicarbonate solution was very effective in pesticides removal compared with water and chemical alone.
References
Abolhassani, M., Asadikaram, G., Paydar, P., Fallah, H., et al. (2019). Organochlorine and organophosphorous pesticides may induce colorectal cancer, Acase-control study. Ecotoxicology and environmental safety, 178, 168-177. DOI: 10.1016/j.ecoenv.2019.04.030. DOI: https://doi.org/10.1016/j.ecoenv.2019.04.030
Abou-Arab, A. A. K. (1999). Behavior of pesticides in tomatoes during commercial and home preparation. Food chemistry, 65(4), 509-514. DOI: https://doi.org/10.1016/S0308-8146(98)00231-3
Agyekum, A. A., Ayernor, G. S., Saalia, F. K., & Bediako-Amoa, B. (2015). Translocation of pesticide residues in tomato, mango and pineapple fruits. Journal of Food Science and Engineering, 5, 142-149. DOI: 10.17265/2159-5828/2015.02.006. DOI: https://doi.org/10.17265/2159-5828/2015.03.006
Akoto, O., Gavor, S., Appah, M. K., & Apau, J. (2015). Estimation of human health risk associated with the consumption of pesticide-contaminated vegetables from Kumasi, Ghana. Environmental Monitoring and Assessment, 187(5), 1-9. DOI: 10.1007/s10661-015-4471-0. DOI: https://doi.org/10.1007/s10661-015-4471-0
Amoah, P., Drechsel, P., Abaidoo, R. C., & Ntow, W. J. (2006). Pesticide and pathogen contamination of vegetables in Ghana’s urban markets. Archives of Environmental Contamination and Toxicology, 50(1), 1-6. DOI: 10.1007/s00244-004-0054-8. DOI: https://doi.org/10.1007/s00244-004-0054-8
Angioni, A., Dedola, F., Garau, A., Sarais, G., Cabras, P., & Caboni, P. (2011). Chlorpyrifos residues levels in fruits and vegetables after field treatment. Journal of Environmental Science and Health, Part B, 46(6), 544-549. DOI: 10.1080/03601234.2011.583880.
Bento, C. P., Yang, X., Gort, G., Xue, S., et al. (2016). Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Science of the Total Environment, 572, 301-311.DOI: 10.1016/j.scitotenv.2016.07.215. DOI: https://doi.org/10.1016/j.scitotenv.2016.07.215
BS EN 15662 (2018) Foods of plant origin multi method for the determination of pesticide residues using GC- and LC-based analysis following acetonitrile extraction/partitioning and clean-up by dispersive SPE, modular QuEChERS-method.
Centers for Disease Control and Prevention Report (2019). Fourth national report on human exposure to environmental chemicals. Atlanta (GA): National Center for Environmental Health. Retrieve from https://www.cdc.gov/exposurereport/pdf/FourthReport_ UpdatedTables_Volume1_Jan2019-508.pdf.
Collins, C., Fryer, M., & Grosso, A. (2006). Plant uptake of non-ionic organic chemicals. Environmental Science & Technology, 40(1), 45-52.DOI: 10.1021/es0508166. DOI: https://doi.org/10.1021/es0508166
Dari, L., Addo, A., & Dzisi, K. A. (2016). Pesticide use in the production of tomato (Solanum lycopersicum L.) in some areas of Northern Ghana. African Journal of Agricultural Research, 11(5), 352-355. DOI: 10.5897/AJAR2015.10325. DOI: https://doi.org/10.5897/AJAR2015.10325
Deka, S. C., Barman, N., & Baruah, A. A. L. H. (2005). Pesticidal contamination status in farmgate vegetables in Assam, India. Pesticide Research Journal, 17(2), 90-93. DOI: 10.1023/a:1014248827898.
Edwards, C. A. (1975). Factors that affect the persistence of pesticides in plants and soils. In Pesticide Chemistry–3, Third International Congress of Pesticide Chemistry Including the Symposium on Dispersion Dynamics of Pollutants in the Environment (pp. 39-56). Butterworth-Heinemann. DOI: https://doi.org/10.1016/B978-0-408-70708-4.50007-7
Elgueta, S., Moyano, S., Sepúlveda, P., Quiroz, C., & Correa, A. (2017). Pesticide residues in leafy vegetables and human health risk assessment in North Central agricultural areas of Chile. Food Additives & Contaminants: Part B, 10(2), 105-112. DOI: 10.1080/19393210.2017.1280540. DOI: https://doi.org/10.1080/19393210.2017.1280540
Fan, L., Niu, H., Yang, X., Qin, W., et al. (2015). Factors affecting farmers' behaviour in pesticide use: Insights from a field study in northern China. Science of the Total Environment, 537, 360-368. DOI: 10.1016/j.scitotenv.2015.07.150. DOI: https://doi.org/10.1016/j.scitotenv.2015.07.150
Felizeter, S., McLachlan, M. S., & De Voogt, P. (2012). Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa). Environmental science & technology, 46(21), 11735-11743. DOI: 10.1021/es302398u. DOI: https://doi.org/10.1021/es302398u
Fernández, M., Picó, Y., & Manes, J. (2000). Determination of carbamate residues in fruits and vegetables by matrix solid-phase dispersion and liquid chromatography–mass spectrometry. Journal of Chromatography A, 871(1-2), 43-56. DOI: S0021-9673(99)00907-3. DOI: https://doi.org/10.1016/S0021-9673(99)00907-3
Finizio, A., Vighi, M., & Sandroni, D. (1997). Determination of n-octanol/water partition coefficient (Kow) of pesticide critical review and comparison of methods. Chemosphere, 34(1), 131-161. DOI: 10.1016/S0045-6535(96)00355-4. DOI: https://doi.org/10.1016/S0045-6535(96)00355-4
FSSAI Guidance Note No. 13/2020 (2020).Pesticides: Food safety concerns, precautions and safety measures.
Haines, D. A., Saravanabhavan, G., Werry, K., & Khoury, C. (2017). An overview of human biomonitoring of environmental chemicals in the Canadian Health Measures Survey: 2007–2019. International Journal of hygiene and environmental health, 220(2), 13-28.DOI: 10.1016/j.ijheh.2016.08.002. DOI: https://doi.org/10.1016/j.ijheh.2016.08.002
Holland, P. T., Hamilton, D., Ohlin, B., & Skidmore, M. W. (1994). Effects of storage and processing on pesticide residues in plant products. Pure and applied chemistry, 66(2), 335-356. DOI: https://doi.org/10.1351/pac199466020335
Hou, R., Zhang, Z., Pang, S., Yang, T., Clark, J. M., & He, L. (2016). Alteration of the nonsystemic behavior of the pesticide ferbam on tea leaves by engineered gold nanoparticles. Environmental Science & Technology, 50(12), 6216-6223. DOI: 10.1021/acs.est.6b01336 DOI: https://doi.org/10.1021/acs.est.6b01336
https://doi.org/10.1016/j.watres.2018.12.039
Izumi, H. (1999). Electrolyzed water as a disinfectant for fresh‐cut vegetables. Journal of Food Science, 64(3), 536-539.DOI:10.1111/j.1365-2621.1999.tb15079. DOI: https://doi.org/10.1111/j.1365-2621.1999.tb15079.x
Jallow, M. F., Awadh, D. G., Albaho, M. S., Devi, V. Y., & Ahmad, N. (2017). Monitoring of pesticide residues in commonly used fruits and vegetables in Kuwait. International Journal of environmental research and public health, 14(8), 833..DOI:10.3390/ijerph14080833. DOI: https://doi.org/10.3390/ijerph14080833
Jardim, A. N. O., Brito, A. P., van Donkersgoed, G., Boon, P. E., & Caldas, E. D. (2018). Dietary cumulative acute risk assessment of organophosphorus, carbamates and pyrethroids insecticides for the Brazilian population. Food and chemical toxicology, 112, 108-117.DOI: 10.1016/j.fct.2017.12.010. DOI: https://doi.org/10.1016/j.fct.2017.12.010
Kaushik, G., Satya, S., & Naik, S. N. (2009). Food processing a tool to pesticide residue dissipation–Areview. Food Research International, 42 (1), 26-40. DOI:10.1016/j.foodres.2008.09.009. DOI: https://doi.org/10.1016/j.foodres.2008.09.009
Klinhom, P., Halee, A., & Methawiwat, S. (2008). The effectiveness of household chemicals in residue removal of methomyl and carbaryl pesticides on Chinese-kale. Agriculture and Natural Resources, 42(5), 136-143.
Krol, W. J., Arsenault, T. L., Pylypiw, H. M., & Incorvia Mattina, M. J. (2000). Reduction of pesticide residues on produce by rinsing. Journal of Agricultural and Food chemistry, 48(10), 4666-4670. DOI: 10.1021/jf0002894. DOI: https://doi.org/10.1021/jf0002894
Kumari, B., Kumar, R., Madan, V. K., Singh, R., Singh, J., & Kathpal, T. S. (2003). Magnitude of pesticidal contamination in winter vegetables from Hisar, Haryana. Environmental Monitoring and Assessment, 87(3), 311-318. DOI:10.1023/A:1024869505573. DOI: https://doi.org/10.1023/A:1024869505573
Kumari, B., Madan, V. K., Kumar, R., & Kathpal, T. S. (2002). Monitoring of seasonal vegetables for pesticide residues. Environmental Monitoring and Assessment, 74(3), 263-270. DOI: https://doi.org/10.1023/A:1014248827898
Kunyanga, C., Amimo, J., Kingori, L. N., & Chemining’wa, G. (2018). Consumer risk exposure to chemical and microbial hazards through consumption of fruits and vegetables in Kenya. Food Sci Qual Manage, 78, 2225-0557.
Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., & Kvesitadze, E. (2015). Plants for remediation: Uptake, translocation and transformation of organic pollutants. In Öztürk M., Ashraf M., Aksoy A., Ahmad M., & Hakeem K. (eds) Plants, pollutants and remediation (pp. 241-308). Springer, Dordrecht. DOI :10.1007/978-94-017-7194-8_12. DOI: https://doi.org/10.1007/978-94-017-7194-8_12
Li, Y., Sallach, J. B., Zhang, W., Boyd, S. A., & Li, H. (2019). Insight into the distribution of pharmaceuticals in soil-water-plant systems. Water research, 152, 38-46. DOI: DOI: https://doi.org/10.1016/j.watres.2018.12.039
Łozowicka, B., Kaczyński, P., Mojsak, P., Rusiłowska, J., et al. (2020). Systemic and non-systemic pesticides in apples from Kazakhstan and their impact on human health. Journal of Food Composition and Analysis, 90, 103494.DOI: 10.1016/j.jfca.2020.103494. DOI: https://doi.org/10.1016/j.jfca.2020.103494
Mbakaya, C., & Ngowi, A. V. (1994). The status of pesticide usage in East Africa. African Journal of Health Sciences, 1(1), 37-41
Nguyen, T. T., Rosello, C., Bélanger, R., & Ratti, C. (2020). Fate of residual pesticides in fruit and vegetable waste (FVW) processing. Foods, 9(10),1468. DOI:10.3390/foods9101468. DOI: https://doi.org/10.3390/foods9101468
Omwenga, I., Kanja, L., Zomer, P., Louisse, J., Rietjens, I. M., & Mol, H. (2021). Organophosphate and carbamate pesticide residues and accompanying risks in commonly consumed vegetables in Kenya. Food Additives & Contaminants: Part B, 14(1), 48-58. DOI: 10.1080/19393210.2020.1861661. DOI: https://doi.org/10.1080/19393210.2020.1861661
Polat, B., & Tiryaki, O. (2020). Assessing washing methods for reduction of pesticide residues in Capia pepper with LC-MS/MS. Journal of Environmental Science and Health, Part B, 55(1), 1-10. DOI: 10.1080/03601234.2019.1660563. DOI: https://doi.org/10.1080/03601234.2019.1660563
Pullagurala, V. L. R., Rawat, S., Adisa, I. O., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Plant uptake and translocation of contaminants of emerging concern in soil. Science of the Total Environment, 636, 1585-1596. DOI: 10.1016/j.scitotenv.2018.04.375. DOI: https://doi.org/10.1016/j.scitotenv.2018.04.375
Randhawa, M. A., Anjum, M. N., Butt, M. S., Yasin, M., & Imran, M. (2014). Minimization of imidacloprid residues in cucumber and bell pepper through washing with citric acid and acetic acid solutions and their dietary intake assessment. International Journal of Food Properties, 17(5), 978-986. DOI:10.1080/10942912.2012.678532. DOI: https://doi.org/10.1080/10942912.2012.678532
Rasolonjatovo, M. A., Cemek, M., Cengiz, M. F., Ortaç, D., et al. (2017). Reduction of methomyl and acetamiprid residues from tomatoes after various household washing solutions. International Journal of Food Properties, 20(11), 2748-2759. DOI: 10.1080/10942912.2016.1250099. DOI: https://doi.org/10.1080/10942912.2016.1250099
Roberts, J. R., & Reigart, J. R. (2013). Recognition and management of pesticide poisonings. Retrieve from http://www2.epa.gov/pesticide-worker-safety.
Rodrigues, A. A., De Queiroz, M. E. L., De Oliveira, A. F., Neves, A. A., et al. (2017). Pesticide residue removal in classic domestic processing of tomato and its effects on product quality. Journal of Environmental Science and Health, part b, 52(12), 850-857. DOI:10.1080/03601234.2017.1359049. DOI: https://doi.org/10.1080/03601234.2017.1359049
SANTE Guideline, SANTE/12682/2019 (2020). Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. Retrieved from https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf .
Satpathy, G., Tyagi, Y. K., & Gupta, R. K. (2012). Removal of organophosphorus (OP) pesticide residues from vegetables using washing solutions and boiling. Journal of Agricultural Science, 4(2), 69-78.DOI:10.5539/jas.v4n2p69. DOI: https://doi.org/10.5539/jas.v4n2p69
Subash, S. P., Chand, P., Pavithra, S., Balaji, S. J., & Pal, S. (2018). Pesticide use in Indian agriculture: trends, market structure and policy issues. Policy Brief retrieved from file:///C:/Users/user/Downloads/PolicyBrief4thProof_final2018_01_17.pdf.
Wang, S., Zhang, S., Huang, H., Zhao, M., & Lv, J. (2011). Uptake, translocation and metabolism of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in maize (Zea mays L.). Chemosphere, 85(3), 379-385. DOI:10.1016/j.chemosphere.2011.07.002 DOI: https://doi.org/10.1016/j.chemosphere.2011.07.002
Wang, W., Wan, Q., Li, Y., Xu, W., & Yu, X. (2019). Uptake, translocation and subcellular distribution of pesticides in Chinese cabbage (Brassica rapa var. chinensis). Ecotoxicology and
Environmental Safety, 183, 109488.DOI: 10.1016/j.ecoenv.2019.109488. DOI: https://doi.org/10.1016/j.ecoenv.2019.109488
World Health Organization International Programme on Chemical Safety. (2009). The WHO recommended classification of pesticides by hazard and guidelines to classification. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/44271/9789241547963_eng.pdf.
Yang, T., Zhao, B., Hou, R., Zhang, Z., et al. (2016). Evaluation of the penetration of multiple classes of pesticides in fresh produce using surface‐enhanced Raman scattering mapping. Journal of Food Science, 81(11), T2891-T2901.DOI: 10.1111/1750-3841.13520. DOI: https://doi.org/10.1111/1750-3841.13520
Youssef, M. M., El-all, A. A., Radwan, M. A., El-Henawy, G. L., & Marei, A. S. (1995). Removal of Pirimiphos-Methyl and Chlorpyrifosmethyl Residues from Treated Tomatoes and Broad Beans by Commercial and Home Preparative Procedures. Alexandria Science Exchange, 16, 461-470.
Yu-shan, Z. H. A. N. G., Xiao-peng, L. I., Hong-mei, L. I. U., Yao-kun, Z. H. A. N. G., et al. (2013). Study on universal cleaning solution in removing blended pesticide residues in Chinese cabbage. Journal of Environmental Chemistry and Ecotoxicology, 5(8), 202-207.DOI: 10.5897/JECE2013.0288.
Zhang, C., Yao, F. E. N. G., Liu, Y. W., Chang, H. Q., Li, Z. J., & Xue, J. M. (2017). Uptake and translocation of organic pollutants in plants: A review. Journal of Integrative Agriculture, 16(8), 1659-1668.DOI: 10.1016/S2095-3119(16)61590-3. DOI: https://doi.org/10.1016/S2095-3119(16)61590-3
Downloads
Published
How to Cite
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.