Evaluation of haematological and behavioural changes in Channa punctatus (Bloch) on short-term exposure to a commercial-grade synthetic pyrethroid pesticide
DOI:
https://doi.org/10.18006/2022.10(1).97.103Keywords:
Channa punctatus, LC50, Pesticide, Pyrethroid, Haematological, BehaviourAbstract
This study aims to assess the acute toxicity of commercial-grade Cypermethrin (10% EC) and evaluate the hematological and behavioral alterations in a freshwater fish Channa punctatus upon short-term exposure to Cypermethrin. A four-day static acute toxicity test was performed to estimate the median lethal concentration (LC50) value of Cypermethrin. During the acute toxicity test, the behavior of the control and cypermethrin exposed fish was critically observed and recorded. After completing the acute toxicity test, the hematological effects of Cypermethrin in C. punctatus were evaluated using two sublethal dosages (0.08 mg/L and 0.12 mg/L). Results of the study revealed that this pesticide induced significant mortality in C. punctatus with a 96-h L50 value of 0.263 mg/L. Cypermethrin exposed fish showed hyperactivity, irritability, erratic swimming, frequent surface visit, etc. Exposure to sublethal concentrations of Cypermethrin for a short period resulted in a significant decline (P<0.05) in total erythrocytes count (TEC), packed cell volume (PCV), mean corpuscular volume (MCV), and hemoglobin (Hb) concentration as compared to control groups. In contrast, pesticide-exposed groups had a significant increase (P<0.05) in mean corpuscular hemoglobin concentration (MCHC) and total leucocyte count (TLC). It is apparent from the results of the study that this commercial formulation is toxic to the studied fish. This study also revealed hematological and behavioral alterations in C. Punctatus which could be used as biomarkers for incipient Cypermethrin intoxication.
References
Adhikari, S., Sarkar, B., Chatterjee, A., Mahapatra,C.T., & Ayyappan, S. (2004). Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton). Ecotoxicology and Environmental Safety, 58(2), 220–226. DOI: https://doi.org/10.1016/j.ecoenv.2003.12.003
Agrahari, S., Pandey, K.C., & Gopal, K. (2006). Effect of monocrotophos on erythropoietic activity and hematological parameters of the freshwater fish Channa punctatus (Bloch). Bulletin of Environmental Contamination and Toxicology, 76(4), 607–613. DOI: https://doi.org/10.1007/s00128-006-0963-5
APHA (2012) Standard Methods for the Examination of Water and Wastewater.American Public Health Association, American Water Works Association and Water Environment Federation,Washington DC.
Arisekar, U., Shakila, R.J., Jeyasekaran, G., Shalini, R., et al. (2019). Accumulation of organochlorine and pyrethroid pesticide residues in fish, water, and sediments in the Thamirabarani river system of southern peninsular India. Environmental Nanotechnology, Monitoring and Management, 11, 100194. DOI: https://doi.org/10.1016/j.enmm.2018.11.003
Borges, A., Scotti, L.V., Siqueira, D.R., Zanini, R., et al. (2007). Changes in hematological and serum biochemical values in jundiá Rhamdia quelen due to sub-lethal toxicity of cypermethrin. Chemosphere, 69(6), 920–926. DOI: https://doi.org/10.1016/j.chemosphere.2007.05.068
Dacie,J.V.,&Lewis, S.M. (1991). Practical haematology.Edinburgh: Churchill Livingstone.
Das, B.K., & Mukherjee, S.C. (2003). Toxicity of cypermethrin in Labeo rohita fingerlings: Biochemical, enzymatic and haematological consequences.Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 134(1), 109–121. DOI: https://doi.org/10.1016/S1532-0456(02)00219-3
de Moraes, F.D., Venturini, F.P., Rossi, P.A., Avilez, I.M., et al. (2018). Assessment of biomarkers in the neotropical fish Brycon amazonicus exposed to cypermethrin-based insecticide. Ecotoxicology, 27(2), 188–197. DOI: https://doi.org/10.1007/s10646-017-1884-2
Finney, D.J. (1971). Probit Analysis. London :Cambridge University Press.
Ghosh, P., Dutta, M., & Panigrahi, A.K. (2021). Behavioral Biomarker Responses of Filopaludina bengalensis to Acute Copper Toxicity. Current World Environment, 16(1), 227–235. DOI: https://doi.org/10.12944/CWE.16.1.23
Gonçalves, A. M. M., Rocha, C. P., Marques, J. C., & Gonçalves, F. J. M. (2021). Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure – A review. Ecological Indicators, 122, 107303. DOI: https://doi.org/10.1016/j.ecolind.2020.107303
Ismail, M., Ali, R., Shahid, M., Khan, M.A., et al. (2018). Genotoxic and hematological effects of chlorpyrifos exposure on freshwater fish Labeo rohita. Drug and Chemical Toxicology, 41(1), 22–26 DOI: https://doi.org/10.1080/01480545.2017.1280047
Jayaprakash, C., & Shettu, N. (2013). Changes in the hematology of the freshwater fish, Channa punctatus (Bloch) exposed to the toxicity of deltamethrin. Journal of Chemical and Pharmaceutical Research, 5(6), 178–183
Kalyabina, V. P., Esimbekova, E. N., Kopylova, K. V., & Kratasyuk, V. A. (2021). Pesticides: formulants, distribution pathways and effects on human health - a review. Toxicology Reports, 8, 1179–1192. DOI: https://doi.org/10.1016/j.toxrep.2021.06.004
Khan, N., Ahmad, M.S., Tabassam, S., Nouroz, F., et al. (2018). Effects of sub-lethal concentration of cypermethrin on histopathological and hematological profile of rohu (Labeo rohita) during acute toxicity. International Journal of Agriculture and Biology, 20 (3), 601–608. DOI: https://doi.org/10.17957/IJAB/15.0527
Kumar, A., Sharma, B., & Pandey, R.S. (2007). Preliminary evaluation of the acute toxicity of cypermethrin and λ-cyhalothrin to Channa Punctatus. Bulletin of Environmental Contamination and Toxicology, 79(6), 613–616. DOI: https://doi.org/10.1007/s00128-007-9282-8
Maurya, P.K., Malik, D.S., & Sharma, A. (2019). Impacts of pesticide application on aquatic environments and fish diversity. In Kumar V, Kumar R, Singh J, Kumar P (Ed), Contaminants in Agriculture and Environment: Health Risks and Remediation (pp. 111–128). Haridwar, India: Agro Environ Media- Agriculture and Ennvironmental Science Academy. DOI: https://doi.org/10.26832/AESA-2019-CAE-0162-09
Mondal, R., Mukherjee, A., Biswas, S., & Kole, R. K. (2018). GC-MS/MS determination and ecological risk assessment of pesticides in aquatic system: A case study in Hooghly River basin in West Bengal, India. Chemosphere, 206, 217–230. DOI: https://doi.org/10.1016/j.chemosphere.2018.04.168
Montanha, F.P., Fredianelli, A.C., Wagner, R., Sacco, S.R., et al. (2014). Clinical, biochemical and haemathological effects in Rhamdia quelen exposed to cypermethrin. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 66(3), 697–704. DOI: https://doi.org/10.1590/1678-41625934
Nwani, C.D., Ivoke, N., Ugwu, D.O., Atama, C., et al. (2013). Investigation on acute toxicity and behavioral changes in a freshwater African catfish, Clarias gariepinus (Burchell, 1822), exposed to organophosphorous pesticide, Termifos®. Pakistan Journal of Zoology, 45(4), 959–965.
Overton, K., Dempster, T., Oppedal, F., Kristiansen, T.S., et al. (2019). Salmon lice treatments and salmon mortality in Norwegian aquaculture: a review. Reviews in Aquaculture, 11(4), 1398–1417. DOI: https://doi.org/10.1111/raq.12299
Özok, N., OĞuz, A.R., Kankaya, E., & Yeltekin, A.Ç. (2018). Hemato-biochemical responses of Van fish (Alburnus tarichi Guldenstadt, 1814) during sublethal exposure to cypermethrin. Human and Ecological Risk Assessment, 24(8), 2240–2246. DOI: https://doi.org/10.1080/10807039.2018.1443389
Polat, H., Erkoc, F.U., Viran, R., & Kocak, O. (2002). Investigation of acute toxicity of beta-cypermethrin on guppies Poecilia reticulata. Chemosphere, 49, 39–44. DOI: https://doi.org/10.1016/S0045-6535(02)00171-6
Rajmohan, K. S., Chandrasekaran, R., & Varjani, S. (2020). A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian Journal of Microbiology, 60(2), 125–138. DOI: https://doi.org/10.1007/s12088-019-00841-x
Saleh,Y.S., & Marie, M.A.S. (2016). Use of Arius thalassinus fish in a pollution biomonitoring study, applying combined oxidative stress, hematology, biochemical and histopathological biomarkers: A baseline field study. Marine Pollution Bulletin, 106 (1–2), 308–322. DOI: https://doi.org/10.1016/j.marpolbul.2016.03.030
Sarma, D., Das, J., & Dutta, A. (2013). Acute toxicity and behavioural changes in Channa punctatus (Bloch) exposed to Rogor (an organophosphorus pesticide). Nature Environment and Pollution Technology,12(4), 641–644.
Saxena, K.K., & Seth, N. (2002). Toxic effects of cypermethrin on certain hematological aspects of fresh water fish Channa punctatus. Bulletin of Environmental Contamination and Toxicology,69(3), 364–369. DOI: https://doi.org/10.1007/s00128-002-0071-0
Schalm, O. W., Jain, N. C., & Caroll, E. J. (1975). Veterinary haematology 3(Ed). Philadelphia,USA: Lea and Fibiger.
Shaluei, F., Hedayati, A., Kolangi, H., Jahanbakhshi, A., & Baghfalaki, M. (2012). Evaluation of the acute toxicity of cypermethrin and its effect on behavioral responses of Caspian Roach (Rutilus rutilus caspicus) and silver carp (Hypophthalmicthys molitrix). Global Veterinaria, 9(2), 215–219.
Sharma, R., Jindal, R., & Faggio, C. (2021). Cassia fistula ameliorates chronic toxicity of cypermethrin in Catla catla. Comparative Biochemistry and Physiology Part-C:Toxicology and Pharmacology, 248, 109113. DOI: https://doi.org/10.1016/j.cbpc.2021.109113
Singh, S., Tiwari, R.K., & Pandey, R.S. (2018). Evaluation of acute toxicity of triazophos and deltamethrin and their inhibitory effect on AChE activity in Channa punctatus. Toxicology Reports, 5, 85–89. DOI: https://doi.org/10.1016/j.toxrep.2017.12.006
Soderlund, D.M. (2011). Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Archives of Toxicology, 86(2), 165–181. DOI: https://doi.org/10.1007/s00204-011-0726-x
Sood, R. (2010). Hematology for Students and Practitioners. New Delhi : Jaypee Brothers Medical Publishers (P) Ltd.. DOI: https://doi.org/10.5005/jp/books/11142
Tsai, Y.H., & Lein, P. J. (2021). Mechanisms of organophosphate neurotoxicity. Current Opinion in Toxicology, 26, 49–60. DOI: https://doi.org/10.1016/j.cotox.2021.04.002
Ullah, R., Zuberi, A., Naeem, M., & Ullah, S. (2015). Toxicity to Hematology and Morphology of Liver, Brain and Gills during Acute Exposure of Mahseer (Tor putitora) to Cypermethrin. International Journal of Agriculture and Biology, 17, 199-204.
Ullah, S., Li, Z., Zuberi, A., Arifeen, M.Z.U., & Baig, M.M.F.A. (2019). Biomarkers of pyrethroid toxicity in fish. Environmental Chemistry Letters, 17(2), 945–973. DOI: https://doi.org/10.1007/s10311-018-00852-y
Vani, T., Saharan, N., Roy, S.D., Ranjan, R., et al. (2012). Alteration in haematological and biochemical parameters of Catla catla exposed to sub-lethal concentration of cypermethrin. Fish Physiology and Biochemistry, 38(6), 1577–1584. DOI: https://doi.org/10.1007/s10695-012-9650-0
Vasantharaja,C., Pugazhendy, K., Venkatesan, S., et al. (2012). Acute Toxicity of Cypermethrin and its Impact on Biochemical Alteration in the Fresh Water Fish Cirrhinus mrigala (Hamilton) and Protective Effect of Cardiospermum helicacabum (Linn). International Journal of Pharmaceutical & Biological Archives, 3(1), 146-152.
Velmurugan, B., Cengiz, E.I., Senthilkumaar, P., et al. (2016). Hematological Parameters of Freshwater Fish Anabas testudineus after Sublethal Exposure to Cypermethrin. Environmental Pollution and Protection, 1(1), 32–39. DOI: https://doi.org/10.22606/epp.2016.11004
Xu, C., Tu, W., Lou, C., Hong, Y., & Zhao, M. (2010). Enantioselective separation and zebrafish embryo toxicity of insecticide beta-cypermethrin. Journal of Environmental Sciences (China), 22(5), 738–743. DOI: https://doi.org/10.1016/S1001-0742(09)60171-6
Downloads
Published
How to Cite
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.