Effect of probiotic Bacillus spp.-supplemented feed on the growth, length-weight relationship, and condition factor of Nile tilapia (Oreochromis niloticus)

Authors

DOI:

https://doi.org/10.18006/2022.10(1).90.96

Keywords:

Feed conversion ratio, Aquaculture, Nile tilapia, Bacillus, Probiotics, Feeding

Abstract

This study was carried out to evaluate the effect of two probiotic Bacillus spp. (RM10 and BFAR9) on the growth, length-weight relationship (LWR), and condition factor (k) of Nile tilapia (Oreochromis niloticus). For this, one hundred thirty-five fingerlings (1.12±0.08 g weight and 1.26±0.15 cm length) were divided into three groups (Control, RM10, and BFAR9) and distributed into nine circular concrete tanks. The fish were fed with commercial (control) and Bacillus spp. supplemented diets at 5% of body weight for 56 days. The results of the study revealed better (P<0.05) growth concerning average body weight (ABW - 17.12±0.71g), specific growth rate (SGR - 4.89±0.22 g·day-1), absolute growth (AG - 16.02±0.78 g), and feed conversion ratio (FCR - 1.31±0.09) in the group fed with Bacillus sp. RM10 as compared to the control (ABW- 13.25±2.34g; SGR - 4.41±0.17g·day-1; AG - 12.13±2.25g; FCR - 1.62±0.11). The LWR in all experimental treatments showed a significant correlation (P<0.05) with an R2 value of 0.988, 0.966, and 0.979 for Control, RM10, and BFAR9, respectively. The k value revealed that all treatments are in good condition as k value is greater than 1 (1.913, 2.038, and 1.896 for control, RM10, and BFAR9 respectively). The result of the current study revealed that application of Bacillus sp. RM10 improves the growth and feed utilization in Nile tilapia.

References

Amoah, K., Dong, X., Tan, B., Zhang, S., et al. (2021). Effects of three probiotic strains (Bacillus coagulans, B. licheniformis and Paenibacillus polymyxa) on growth, immune response, gut morphology and microbiota, and resistance against Vibrio harveyi of northern whitings, Sillago sihama Forsskál (1775). Animal Feed Science and Technology, 277, 114958. https://doi.org/10.1016/ j.anifeedsci.2021.114958 DOI: https://doi.org/10.1016/j.anifeedsci.2021.114958

Apún-Molina, J. P., Santamaría- Miranda, A., Luna-González, A., Martínez-Díaz, S. F., & Rojas-Contreras, M. (2009). Effect of potential probiotic bacteria on growth and survival of tilapia Oreochromis niloticus L., cultured in the laboratory under high density and suboptimum temperature. Aquaculture Research, 40(8), 887–894. https://doi.org/10.1111/j.1365-2109.2009.02172.x DOI: https://doi.org/10.1111/j.1365-2109.2009.02172.x

Arığ, N., Suzer, C., Gökvardar, A., Başaran, F., et al. (2013). Effects of probiotic (Bacillus sp.) supplementation during larval development of gilthead sea bream (Sparus aurata, L.). Turkish Journal of Fisheries and Aquatic Sciences, 13, 407–414. https://doi.org/DOI: 10.4194/1303-2712-v13_3_03 DOI: https://doi.org/10.4194/1303-2712-v13_3_03

Bagenal, T. (1978). Methods for assessment of fish production in fresh waters (3rd ed.). Oxford (UK) Blackwell Scientific Publication.

Balcazar, J., Blas, I., Ruizzarzuela, I., Cunningham, D., Vendrell, D., &Muzquiz, J. (2006). The role of probiotics in aquaculture. Veterinary Microbiology, 114(3–4), 173–186. https://doi.org/10.1016/j.vetmic.2006.01.009 DOI: https://doi.org/10.1016/j.vetmic.2006.01.009

Bureau of Fisheries and Aquatic Resources. (2018). Philippine Fisheries Profile. https://www.bfar.da.gov.ph/publication.jsp?id= 2369#post

Cruz, P. M., Ibáñez, A. L., Monroy Hermosillo, O. A., & Ramírez Saad, H. C. (2012). Use of probiotics in aquaculture. ISRN Microbiology, 2012, 1–13. https://doi.org/10.5402/2012/916845 DOI: https://doi.org/10.5402/2012/916845

da Paixão, A. E. M., dos Santos, J. C., Pinto, M. S., Pereira, D. S. P., et al. (2017). Effect of commercial probiotics (Bacillus subtilis and Saccharomyces cerevisiae) on growth performance, body composition, hematology parameters, and disease resistance against Streptococcus agalactiae in tambaqui (Colossoma macropomum). Aquaculture International, 25(6), 2035–2045. https://doi.org/10.1007/s10499-017-0173-7 DOI: https://doi.org/10.1007/s10499-017-0173-7

Elsabagh, M., Mohamed, R., Moustafa, E. M., Hamza, A., et al. (2018). Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition, 24(6), 1613–1622. https://doi.org/10.1111/anu.12797 DOI: https://doi.org/10.1111/anu.12797

Froese, R. (2006). Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. Journal of Applied Ichthyology, 22(4), 241–253. https://doi.org/10.1111/j.1439-0426.2006.00805.x DOI: https://doi.org/10.1111/j.1439-0426.2006.00805.x

Fulton, T. W. (1904). The Rate of Growth of Fishes. [Twenty-second Annual Report, Part III] (pp. 141–241). Fisheries Board of Scotland, Edinburgh.

Ghalwash, H. R., Salah, A. S., El-Nokrashy, A. M., Abozeid, A. M., Zaki, V. H., & Mohamed, R. A. (2021). Dietary supplementation with Bacillus species improves growth, intestinal histomorphology, innate immunity, antioxidative status and expression of growth and appetite-regulating genes of Nile tilapia fingerlings. Aquaculture Research, n/a(n/a). https://doi.org/10.1111/are.15671 DOI: https://doi.org/10.1111/are.15671

Hauville, M. R., Zambonino-Infante, J. L., Gordon Bell, J., Migaud, H., & Main, K. L. (2016). Effects of a mix of Bacillus sp. as a potential probiotic for Florida pompano, common snook and red drum larvae performances and digestive enzyme activities. Aquaculture Nutrition, 22(1), 51–60. https://doi.org/10.1111/anu.12226 DOI: https://doi.org/10.1111/anu.12226

Keys, A. B. (1928). The Weight-Length Relation in Fishes. Proceedings of the National Academy of Sciences of the United States of America, 14(12), 922–925. DOI: https://doi.org/10.1073/pnas.14.12.922

Kong, W., Huang, C., Tang, Y., Zhang, D., Wu, Z., & Chen, X. (2017). Effect of Bacillus subtilis on Aeromonas hydrophila-induced intestinal mucosal barrier function damage and inflammation in grass carp (Ctenopharyngodonidella). Scientific Reports, 7(1), 1588. https://doi.org/10.1038/s41598-017-01336-9 DOI: https://doi.org/10.1038/s41598-017-01336-9

Kuebutornye, F. K. A., Abarike, E. D., & Lu, Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish & Shellfish Immunology, 87, 820–828. https://doi.org/10.1016/j.fsi.2019.02.010 DOI: https://doi.org/10.1016/j.fsi.2019.02.010

Kuebutornye, F. K. A., Wang, Z., Lu, Y., Abarike, E. D., et al. (2020). Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection. Fish & Shellfish Immunology, 97, 83–95. https://doi.org/10.1016/j.fsi.2019.12.046 DOI: https://doi.org/10.1016/j.fsi.2019.12.046

McFarland, J. (1907). The Nephelometer: An Instrument for Estimating the Number of Bacteria in Suspensions used for Calculating the Opsonic Index and for Vaccines. Journal of the American Medical Association, XLIX(14), 1176–1178. https://doi.org/10.1001/jama.1907.25320140022001f DOI: https://doi.org/10.1001/jama.1907.25320140022001f

Munir, M. B., Hashim, R., Abdul Manaf, M. S., & Nor, S. A. M. (2016). Dietary prebiotics and probiotics influence the growth performance, feed utilisation, and body indices of Snakehead (Channa striata) fingerlings. Tropical Life Sciences Research, 27(2), 111–125. https://doi.org/10.21315/tlsr2016.27.2.9 DOI: https://doi.org/10.21315/tlsr2016.27.2.9

Myers, D. (2007). Probiotics. Journal of Exotic Pet Medicine, 16(3), 195–197. https://doi.org/10.1053/j.jepm.2007.06.008 DOI: https://doi.org/10.1053/j.jepm.2007.06.008

Nimrat, S., Suksawat, S., Boonthai, T., & Vuthiphandchai, V. (2012). Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Veterinary Microbiology, 159(3–4), 443–450. https://doi.org/10.1016/j.vetmic.2012.04.029 DOI: https://doi.org/10.1016/j.vetmic.2012.04.029

Opiyo, M. A., Jumbe, J., Ngugi, C. C., & Charo-Karisa, H. (2019). Different levels of probiotics affect growth, survival and body composition of Nile tilapia (Oreochromis niloticus) cultured in low input ponds. Scientific African, 4, e00103. https://doi.org/10.1016/j.sciaf.2019.e00103 DOI: https://doi.org/10.1016/j.sciaf.2019.e00103

Prabu, E., Rajagopalsamy, C. B. T., Ahilan, B., Jeevagan, I. J. M. A., & Renuhadevi, M. (2019). Tilapia – An Excellent Candidate Species for World Aquaculture: A Review. Annual Research & Review in Biology, 31(3), 1–14. https://doi.org/10.9734/arrb/2019/ v31i330052 DOI: https://doi.org/10.9734/arrb/2019/v31i330052

Rahman, Z., Mahun, A., Ahmad, I., & Rashid, I. (2019). Influence of Probiotics on the Growth Performance of Sex Reversed Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758) Fry. Journal of Aquaculture Research & Development, 10(2), 7. https://doi.org/10.4172/2155-9546.1000564

Ridha, M. T., & Azad, I. S. (2012). Preliminary evaluation of growth performance and immune response of Nile tilapia Oreochromis niloticus supplemented with two putative probiotic bacteria: Probiotic effect on tilapia growth and immunity. Aquaculture Research, 43(6), 843–852. https://doi.org/10.1111/j.1365-2109.2011.02899.x DOI: https://doi.org/10.1111/j.1365-2109.2011.02899.x

Samson, J. S., Choresca, C. H., & Quiazon, K. M. A. (2020). Selection and screening of bacteria from African nightcrawler, Eudrilus eugeniae (Kinberg, 1867) as potential probiotics in aquaculture. World Journal of Microbiology and Biotechnology, 36(1), 16. https://doi.org/10.1007/s11274-019-2793-8 DOI: https://doi.org/10.1007/s11274-019-2793-8

Saravanan, K., Sivaramakrishnan, T., Praveenraj, J., Kiruba-Sankar, R., et al. (2021). Effects of single and multi-strain probiotics on the growth, hemato-immunological, enzymatic activity, gut morphology and disease resistance in Rohu, Labeo rohita. Aquaculture, 540, 736749. https://doi.org/10.1016/ j.aquaculture.2021.736749 DOI: https://doi.org/10.1016/j.aquaculture.2021.736749

Shelby, R. A., Lim, C., Yildirim-Aksoy, M., & Delaney, M. A. (2006). Effects of probiotic diet supplements on disease resistance and immune response of young Nile tilapia, Oreochromis niloticus. Journal of Applied Aquaculture, 18(2), 23–34. https://doi.org/10.1300/J028v18n02_02 DOI: https://doi.org/10.1300/J028v18n02_02

Silva, T. F. A., Petrillo, T. R., Yunis-Aguinaga, J., & Fernandes, P. (2015). Effects of the probiotic Bacillus amyloliquefaciens on growth performance, hematology and intestinal morphometry in cage-reared Nile tilapia. Latin American Journal of Aquatic Research, 43(5), 963–971. https://doi.org/10.3856/vol43-issue5-fulltext-16 DOI: https://doi.org/10.3856/vol43-issue5-fulltext-16

Soltan, M. A., Fouad, I. M., &Elfeky, A. (2016). Growth and feed utilization of Nile tilapia, Oreochromis niloticus fed diets containing probiotic. Global Veterinaria, 17(5), 442–450. https://doi.org/10.5829/idosi.gv.2016.442.450

Sutthi, N., Thaimuangphol, W., Rodmongkoldee, M., Leelapatra, W., & Panase, P. (2018). Growth performances, survival rate, and biochemical parameters of Nile tilapia (Oreochromis niloticus) reared in water treated with probiotic. Comparative Clinical Pathology. https://doi.org/10.1007/s00580-017-2633-x DOI: https://doi.org/10.1007/s00580-017-2633-x

Tesch, F. W. (1968). Age and growth. In W. E. Ricker (Ed.), Methods for assessment of fish production in fresh waters (pp. 93–123). Blackwell Scientific Publications.

Wang, M., Liu, G., Lu, M., Ke, X., et al. (2017). Effect of Bacillus cereus as a water or feed additive on the gut microbiota and immunological parameters of Nile tilapia. Aquaculture Research, 48(6), 3163–3173. https://doi.org/10.1111/are.13146 DOI: https://doi.org/10.1111/are.13146

Watanabe, W. O., Losordo, T. M., Fitzsimmons, K., & Hanley, F. (2002). Tilapia Production Systems in the Americas: Technological Advances, Trends, and Challenges. Reviews in Fisheries Science, 10(3–4), 465–498. https://doi.org/10.1080/20026491051758 DOI: https://doi.org/10.1080/20026491051758

Won, S., Hamidoghli, A., Choi, W., Park, Y., et al. (2020). Effects of Bacillus subtilis WB60 and Lactococcus lactis on Growth, Immune Responses, Histology and Gene Expression in Nile Tilapia, Oreochromis niloticus. Microorganisms, 8(1), 67. https://doi.org/10.3390/microorganisms8010067 DOI: https://doi.org/10.3390/microorganisms8010067

Zhou, X., Tian, Z., Wang, Y., & Li, W. (2009). Effect of treatment with probiotics as water additive on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiology and Biochemistry, 36, 501–509. https://doi.org/10.1007/s10695-009-9320-z DOI: https://doi.org/10.1007/s10695-009-9320-z

Zokaeifar, H., Balcázar, J. L., Saad, C. R., Kamarudin, M. S., et al. (2012). Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 33(4), 683–689. https://doi.org/10.1016/j.fsi.2012.05.027 DOI: https://doi.org/10.1016/j.fsi.2012.05.027

Downloads

Published

2022-02-28

How to Cite

Samson, J. S. . (2022). Effect of probiotic Bacillus spp.-supplemented feed on the growth, length-weight relationship, and condition factor of Nile tilapia (Oreochromis niloticus). Journal of Experimental Biology and Agricultural Sciences, 10(1), 90–96. https://doi.org/10.18006/2022.10(1).90.96

Issue

Section

RESEARCH ARTICLES

Categories