Gene action of yield and its contributing traits in wide-compatible elite rice (Oryza sativa L.) restorer lines
DOI:
https://doi.org/10.18006/2024.12(6).850.859Keywords:
Wide compatibility, Generation mean analysis, Scaling test, Gene action, Genetic effectsAbstract
Profiling the genetic architecture of quantitative traits, such as yield and its contributing factors, is essential for successful breeding programs. Understanding the genetic components of variation is key to maximizing genetic gains with precision in crop improvement. This study evaluated the genetics of yield and its related traits through generation mean analysis in six generations (P1, P2, F1, F2, B1, and B2) of crosses involving elite restorer lines. Results from the scaling tests indicated that epistatic interactions were present for all traits examined, except for effective tillers per plant in crosses I (CR 22-153-1 x Lemont) and II (CR 22-153-1 x CR 22-1-5-1). The six-parameter analysis showed a combination of additive, dominance, and epistatic gene effects, although their contributions varied. In both crosses, the additive or fixable variance was consistently lower than the non-additive variance for most yield-related traits. Among the genetic effects, the dominance effect (h) and the dominance × dominance effect were significantly higher for most traits in both crosses. However, the values of these effects often exhibited opposite signs for different traits, underscoring the importance of duplicate epistasis in the inheritance and expression of these traits. The predominance of dominance, interaction effects, and duplicate epistasis across all studied traits and crosses limits the potential for early generation selection. Nevertheless, bi-parental matings between superior segregants may help disrupt undesirable linkages and produce favorable segregants with an accumulation of positive alleles for trait development.
References
Arsode, P. B., Singh, R. P., Singh, S., Kumar, M., Namrata, et al. (2022). Genetics of grain yield and its component traits in drought tolerance rice. Oryza-An International Journal on Rice, 59(2), 150–156. https://doi.org/10.35709/ory.2022.59.2.2 DOI: https://doi.org/10.35709/ory.2022.59.2.2
Chen, J., Ding, J., Ouyang, Y., Du, H., Yang, J., et al. (2008). A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica–japonica hybrids in rice. Proceedings of the National Academy of Sciences, 105(32), 11436–11441.https://doi.org/10.1073/pnas.0804761105 DOI: https://doi.org/10.1073/pnas.0804761105
Das, G., Pradhan, B., Bastia, D., Samantaray, S., Jena, D., et al. (2022a). Pyramiding Submergence Tolerance and Three Bacterial Blight Resistance Genes in Popular Rice Variety Hasanta through Marker-Assisted Backcross Breeding. Agriculture, 12, 1815. https://doi.org/10.3390/ agriculture12111815. DOI: https://doi.org/10.3390/agriculture12111815
Das, G., Pradhan, B., Bastia, D. N., & Verma, R.(2022b) Generation mean analysis for submergence tolerant and yield traits in rice. The Pharma Innovation Journal, 11(3), 1022–1026.
Gajanan, K. A. (2015). Generation mean analysis in rice (Oryza sativa L.) Ph.D. Dissertation submitted to the Navsari Agricultural University, Gujarat, India.
Ganapati, R. K., Rasul, M. G., Sarker, U., Singha, A., & Faruquee, M. (2020). Gene action of yield and yield contributing traits of submergence tolerant rice (Oryza sativa L.) in Bangladesh. Bulletin of the National Research Centre, 44(1), 1-7. https://doi.org/10.1186/s42269-019-0261-0 DOI: https://doi.org/10.1186/s42269-019-0261-0
Gobu, R., Lal, J. P., & Anandan, A. (2021). Generation Mean Analysis for Yield and Drought Tolerant Traits under Rainfed and Irrigated Conditions in Rice (Oryza sativa L.). International Journal of Environment and Climate Change, 11(11), 170–178. https://doi.org/10.9734/ijecc/2021/v11i1130530 DOI: https://doi.org/10.9734/ijecc/2021/v11i1130530
Hayman, B. I. (1958). The separation of epistatic from additive and dominance variation in generation means. Heredity, 12(3), 371-390. https://doi.org/10.1038/hdy.1958.36 DOI: https://doi.org/10.1038/hdy.1958.36
Ikehashi, H., & Araki, H. (1984). Varietal Screening of Compatibility Types Revealed in F1 Fertility of Distant Crosses in Rice. Japanese Journal of Breeding, 34(3), 304–313. https://doi.org/10.1270/jsbbs1951.34.304 DOI: https://doi.org/10.1270/jsbbs1951.34.304
Jinks, J. L., & Jones, R. M. (1958). Estimation of the components of heterosis. Genetics, 43(2), 223–234. https://doi.org/10.1093/genetics/43.2.223 DOI: https://doi.org/10.1093/genetics/43.2.223
Kallugudi, J., Singh, V. J., Vinod, K. K., Krishnan, S. G., Nandakumar, S., et al. (2022). Population Dynamics of Wide Compatibility System and Evaluation of Intersubspecific Hybrids by indica-japonica Hybridization in Rice. Plants, 11(15), 1930. https://doi.org/10.3390/plants11151930 DOI: https://doi.org/10.3390/plants11151930
Kamara, N., Asante, M. D., & Akromah, R. (2017). Inheritance studies of aroma and yield attributes in rice (Oryza sativa L.) genotypes. African journal of agricultural research, 12(50), 3461–3469. https://doi.org/10.5897/AJAR2017.12583
Kathiresan, P. K., Ramamoorthy, P., & Subramanian, S. (2024). Generation mean analysis reveals insights into yield attributing traits in rice (Oryza sativa L.) under drought and irrigated environments. Vegetos, 1-8. https://doi.org/10.1007/s42535-024-00958-5 DOI: https://doi.org/10.1007/s42535-024-00958-5
Kour, A., Kumar, B., Singh, B., Attri, H., & Bangarwa, S. K. (2019). Generation mean analysis for yield and grain quality traits in rice ( Oryza sativa L.). Electronic Journal of Plant Breeding, 10(1), 289–292. https://doi.org/10.5958/0975-928X.2019.00035.8 DOI: https://doi.org/10.5958/0975-928X.2019.00035.8
Kumar, K. P., Pushpam, R., Manonmani, S., Raveendran, M., & Senthil, A. (2024). Deciphering gene action for traits contributing to submergence tolerance and yield in rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 15(1), 63-69. DOI: https://doi.org/10.37992/2024.1501.007
Kumar, M., Singh, R.P., Jena, D., Singh, V., Rout, D., et al. (2023). Marker-Assisted Improvement for Durable Bacterial Blight Resistance in Aromatic Rice Cultivar HUR 917 Popular in Eastern Parts of India. Plants, 12, 1363. https://doi.org/10.3390/plants 12061363. DOI: https://doi.org/10.3390/plants12061363
Kumar, M., Singh, R. P., Singh, O. N., Singh, P., Arsode, P., Jena, D., Samantaray, S., & Verma, R. (2019). Generation mean analysis for bacterial blight resistance and yield traits in rice. Journal of Pharmacognosy and Phytochemistry, 8(4), 2120–2124.
Lenka, B., Baisakh, B., Dash, M., Lenka, D., & Tripathy, S. K. (2021). Gene Action Studies for Yield and its Related Traits by using Generation Mean Analysis in Mungbean [Vigna radiata (L.) Wilczek]. Legume Research, 45(2): 149-153. https://doi.org/10.18805/LR-4715 DOI: https://doi.org/10.18805/LR-4715
Lingaiah, N., Raju, C. S., Radhika, K., Sarla, N., Venkanna, V., & Reddy, D. V. V. (2020). Estimation of gene effects through generation mean analysis in elite rice (Oryza sativa L.) crosses. Journal of Experimental Biology and Agricultural Sciences, 8(1), 15–20. https://doi.org/10.18006/2020.8(1).15.20 DOI: https://doi.org/10.18805/ag.D-5330
Mather, K. (1949). Biometrical Genetics: The Study of Continuous Variation by K. Mather: Very Good Plus (1949) 1st Edition. Tarrington Books. https://www.abebooks.com/first-edition/Biometrical-Genetics-Study-Continuous-Variation-Mather/ 30685509296/bd
Mather, K., & Jinks, J. L. (1971). Biometrical Genetics. Springer US. https://doi.org/10.1007/978-1-4899-3404-8 DOI: https://doi.org/10.1007/978-1-4899-3404-8
Nofal, R. S., & Gaballah, M. M. (2024). Determining the Gene Action Type for Grain Yield and its Components using Generation Mean Analysis in Rice (Oryza sativa L.). Journal of Plant Production, 15(4), 139-144. DOI: https://doi.org/10.21608/jpp.2024.275948.1316
Revathi, S. (2015). Marker-assisted introgression of wide compatibility gene into restorer parents for exploitation of heterosis in indica/japonica crosses of rice (Oryza sativa L.) Ph.D. Dissertation submitted to the Tamil Nadu Agricultural University, Tamil Nadu, India.
Sahoo, B., Nair, S. K., Jena, D., Rout, D., Singh, V., et al. (2022). Genetic analysis of yield and quality traits in improved parental lines of the rice hybrid Rajalaxmi. Journal of Emerging Technologies and Innovative Research, 9(3), 366-373.
Sakr, S. M., Gaballah, M. M., Ghidan, W. F., & Talha, I. A. (2024). Inheritance Analysis of Grain Yield and Contributing Traits in Rice Through Six Populations Under Normal and Water Deficit Conditions. Journal of Plant Production, 15(12), 803-812. DOI: https://doi.org/10.21608/jpp.2024.340279.1419
Sharma, A., Kumawat, S., Kumar, A., & Jaiswal, H. K. (2024). Generation mean analysis for yield and quality traits in basmati rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 15(1), 138-146. DOI: https://doi.org/10.37992/2024.1501.021
Solanke, A. C., Patel, P. B., & Patel, P. K. (2019). Generation mean analysis for yield and it’s contributing traits in aromatic rice (Oryza sativa L.). The Pharma Innovation Journal, 8(8), 05-09.
Sreelakshmi, C., & Babu, P. R. (2022). Study of genetic architecture of grain yield and quality traits through generation mean analysis in rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 13(2), 325-333. DOI: https://doi.org/10.37992/2022.1302.051
Sundaram, R. M., Sakthivel, K., Hariprasad, A. S., Ramesha, M. S., Viraktamath, B. C., et al. (2010). Development and validation of a PCR-based functional marker system for the major wide-compatible gene locus S5 in rice. Molecular Breeding, 26(4), 719–727. https://doi.org/10.1007/s11032-010-9482-5 DOI: https://doi.org/10.1007/s11032-010-9482-5
Downloads
Published
How to Cite
License
Copyright (c) 2025 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.