In-vitro antibacterial activity, Molecular docking, and MD Simulation Analysis of Phytoconstituents of Nasturtium officinale

Authors

DOI:

https://doi.org/10.18006/2024.12(6).838.849

Keywords:

Nasturtium officinale, Staphylococcus aureus, Antibacterial activity, TLC fingerprint, Molecular docking, MD Simulation

Abstract

Medicinal plants play a significant role in various traditional medicine systems worldwide. Nasturtium officinale W.T. Aiton, commonly known as ‘Halim,’ is a herbaceous perennial often used for its multiple health benefits. It serves as a depurative, diuretic, expectorant, hypoglycemic, hypolipidemic, and odontalgic agent and is utilized in the management of various ailments and disorders. This study aimed to evaluate the antimicrobial efficacy of different solvent extracts of N. officinale against Staphylococcus aureus. The antimicrobial activity was assessed through an in vitro assay using the disk diffusion method. Additionally, the minimum inhibitory concentration (MIC) was determined in comparison with standard reference compounds. Among the extracts tested, the chloroform extract of N. officinale (NOCE) exhibited the most potent inhibitory effect, demonstrating significant antibacterial activity. The high efficacy of the NOCE suggests that it may contain active phytoconstituents capable of targeting bacterial strains. Furthermore, molecular docking studies revealed that the phytoconstituents isorhamnetin, luteolin, and quercetin exhibited strong interactions with bacterial DNA gyrase. The molecular dynamics (MD) simulation of the best-docked compound, isorhamnetin, against bacterial DNA gyrase indicated that all parameters were within acceptable limits, and the compound effectively interacted with the receptor. These findings confirm that N. officinale possesses potential antibacterial activity, which may be attributed to the presence of isorhamnetin.

Author Biographies

Nitisha Negi, School of Pharmaceutical Sciences, IFTM University, Moradabad-244102, U.P., India

School of Pharmaceutical Sciences, IFTM University, Moradabad-244102, U.P., India

Department of Pharmaceutical Sciences, Faculty of Technology, Sir J.C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital-263136, Uttarakhand, India

Sukirti Upadhyay, School of Pharmaceutical Sciences, IFTM University, Moradabad-244102, U.P., India

School of Pharmaceutical Sciences, IFTM University, Moradabad-244102, U.P., India

Bhuwan Chandra Joshi, Department of Pharmaceutical Sciences, Faculty of Technology, Sir J.C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital-263136, Uttarakhand, India

Department of Pharmaceutical Sciences, Faculty of Technology, Sir J.C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital-263136, Uttarakhand, India

Prinsa, Department of Pharmaceutical Chemistry, Siddhartha Institute of Pharmacy, Near IT-Park, Sahastradhara Road, Dehradun-248001, Uttarakhand, India

Department of Pharmaceutical Chemistry, Siddhartha Institute of Pharmacy, Near IT-Park, Sahastradhara Road, Dehradun-248001, Uttarakhand, India

Supriyo Saha, Department of Pharmaceutical Chemistry, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun-248007, Uttarakhand, India

Department of Pharmaceutical Chemistry, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun-248007, Uttarakhand, India

References

Akbari Bazm, M., Khazaei, M., Khazaei, F., & Naseri, L. (2019). Nasturtium Officinale L. hydroalcoholic extract improved oxymetholone-induced oxidative injury in mouse testis and sperm parameters. Andrologia, 51(7), e13294. DOI: https://doi.org/10.1111/and.13294

Ayele, T. T., Regasa, M. B., & Delesa, D. A. (2015). Antibacterial and antagonistic activity of selected traditional medicinal plants and herbs from East Wollega Zone against clinical isolated human pathogens. Science, Technology and Arts Research Journal, 4(3), 175-179. DOI: https://doi.org/10.4314/star.v4i3.26

Barnes, V.L., Heithoff, D.M., Mahan, S.P., House, J.K., & Mahan, M.J. (2023). Antimicrobial susceptibility testing to evaluate minimum inhibitory concentration values of clinically relevant antibiotics. STAR Protocols, 4(3), 102512. DOI: https://doi.org/10.1016/j.xpro.2023.102512

Biemer, J.J. (1971). Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Annals of Clinical & Laboratory Science, 3(2), 135-40.

Bisht, A., Tewari, D., Kumar, S., & Chandra, S. (2024). Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia. Molecular Diversity, 28(3), 1743-1763. DOI: https://doi.org/10.1007/s11030-023-10684-w

Butnariu, M., & Bostan, C. (2011). Antimicrobial and anti-inflammatory activities of the volatile oil compounds from Tropaeolum majus L.(Nasturtium). African journal of biotechnology, 10(31), 5900-5909. DOI: https://doi.org/10.5897/AJB11.264

Dos Santos Nascimento, I.J., & de Moura, R.O. (2024). Molecular Dynamics Simulations in Drug Discovery. Mini Reviews in Medicinal Chemistry, 24(11), 1061-1062. DOI: https://doi.org/10.2174/138955752411240402134719

Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., & Suleman, S. (2023). Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. Journal of experimental pharmacology, 15, 51-62. DOI: https://doi.org/10.2147/JEP.S379805

Ercan, L., & Doğru, M. (2023). Determination of phenolic compounds in Nasturtium Officinale by LC-MS/MS using different extraction methods and different solvents. International Journal of Chemistry and Technology, 7(2), 124-130. DOI: https://doi.org/10.32571/ijct.1150482

Farhadi, F., Khameneh, B., Iranshahi, M., & Iranshahy, M. (2019). Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytotherapy Research, 33(1), 13-40. DOI: https://doi.org/10.1002/ptr.6208

Farnsworth, N. R. (1966). Biological and phytochemical screening of plants. Journal of Pharmaceutical Sciences, 55(3), 225-276. DOI: https://doi.org/10.1002/jps.2600550302

Goodsell D.S., Sanner M.F., Olson A.J., & Forli S. (2021). The AutoDock suite at 30. Protein Science, 30(1) 31-43. DOI: https://doi.org/10.1002/pro.3934

Hanwell M.D., Curtis D.E., Lonie, D.C., Vandermeersch T., Zurek E., & Hutchison G.R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17. DOI: https://doi.org/10.1186/1758-2946-4-17

Hemeg, H.A., Moussa, I.M., Ibrahim, S., Dawoud, T.M., Alhaji, J.H., et al. (2020). Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi Journal of Biological Sciences, 27(12), 3221-3227. DOI: https://doi.org/10.1016/j.sjbs.2020.08.015

Hibbert, L.E., Qian, Y., Smith, H.K., Milner, S., Katz, E., Kliebenstein, D.J., & Taylor, G. (2023). Making watercress (Nasturtium officinale) cropping sustainable: genomic insights into enhanced phosphorus use efficiency in an aquatic crop. Frontiers in Plant Science, 14, 1279823. DOI: https://doi.org/10.3389/fpls.2023.1279823

Huang, H., Zhang, Y., Du, Q., Zheng, C., Jin, C., & Li, S. (2024). Synthesis and Antimicrobial Activity of 3-Alkylidene-2-Indolone Derivatives. Molecules, 29(22), 5384. DOI: https://doi.org/10.3390/molecules29225384

Ilieva, Y., Zaharieva, M.M., Najdenski, H., & Kroumov, A.D. (2024). Antimicrobial Activity of Arthrospira (Former Spirulina) and Dunaliella Related to Recognized Antimicrobial Bioactive Compounds. International Journal of Molecular Sciences, 25(10), 5548. DOI: https://doi.org/10.3390/ijms25105548

Jalali, P., Nowroozi, A., Moradi, S., & Shahlaei, M. (2024). Exploration of lipid bilayer mechanical properties using molecular dynamics simulation. Archives of Biochemistry and Biophysics, 761, 110151. DOI: https://doi.org/10.1016/j.abb.2024.110151

Jang, M., Hong, E., & Kim, G. H. (2010). Evaluation of antibacterial activity of 3‐butenyl, 4‐pentenyl, 2‐phenylethyl, and benzyl isothiocyanate in Brassica vegetables. Journal of food science, 75(7), M412-M416. DOI: https://doi.org/10.1111/j.1750-3841.2010.01725.x

Jiang, L., Li, H., Wang, L., Song, Z., Shi, L., Li, W., Deng, X., & Wang, J. (2016). Isorhamnetin Attenuates Staphylococcus aureus Induced Lung Cell Injury by Inhibiting Alpha-Hemolysin Expression. Journal of Microbiology and Biotechnology, 26(3), 596-602. DOI: https://doi.org/10.4014/jmb.1507.07091

Jones, W.P., & Kinghorn, A.D. (2012). Extraction of plant secondary metabolites. Methods in Molecular Biology, 864, 341-66. DOI: https://doi.org/10.1007/978-1-61779-624-1_13

Joshi, B.C., Juyal, V., & Sah, A.N. (2024). First Report on Pharmacognostic, Phytochemical Investigation and In vitro Radical Scavenging Efficacy of Premna barbata from Western Himalaya. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 94, 685–695. DOI: https://doi.org/10.1007/s40011-024-01552-0

Kar, P., Oriola, A.O., & Oyedeji, A.O. (2024). Molecular Docking Approach for Biological Interaction of Green Synthesized Nanoparticles. Molecules, 29(11), 2428. DOI: https://doi.org/10.3390/molecules29112428

Kawsar, S.M.A., Hossain, M.A., Saha, S., Abdallah, E.M., Bhat, A.R., Ahmed, S., Jamalis, J., & Ozeki Y. (2024). Nucleoside-Based Drug Target with General Antimicrobial Screening and Specific Computational Studies against SARS-CoV-2 Main Protease. Chemistry Select, 9, e202304774. DOI: https://doi.org/10.1002/slct.202304774

Khan, M.I., Pathania, S., Al-Rabia, M.W., Ethayathulla, A.S., Khan, M.I., et al. (2024). MolDy: molecular dynamics simulation made easy. Bioinformatics, 40(6), btae313. DOI: https://doi.org/10.1093/bioinformatics/btae313

Kim S., Lee J., Jo S., Brooks C.L. 3rd., Lee H.S., & Im W. (2017). CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. Journal of Computational Chemistry , 38(21) 1879-1886. DOI: https://doi.org/10.1002/jcc.24829

Klimek-Szczykutowicz, M., Szopa, A., & Ekiert, H. (2018). Chemical composition, traditional and professional use in medicine, application in environmental protection, position in food and cosmetics industries, and biotechnological studies of Nasturtium officinale (watercress) - a review. Fitoterapia, 129, 283-292. DOI: https://doi.org/10.1016/j.fitote.2018.05.031

Kulathunga, D.G., & Rubin, J.E. (2017). A review of the current state of antimicrobial susceptibility test methods for Brachyspira. Canadian Journal of Microbiology, 63(6), 465-474. DOI: https://doi.org/10.1139/cjm-2016-0756

Kumari, R., & Kumar, R. (2014). Open Source Drug Discovery Consortium, Lynn A. g_mmpbsa-A GROMACS Tool for High-Throughput MM-PBSA Calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. DOI: https://doi.org/10.1021/ci500020m

Kushwaha, P.P., Singh, A.K., Bansal, T., Yadav, A., Prajapati, K.S., Mohd, S., & Kumar, S. (2021). Identification of Natural Inhibitors Against SARSCoV-2 Drugable Targets Using Molecular Docking, Molecular Dynamics Simulation, and MM-PBSA Approach. Frontier Cellular Infection Microbiology, 11, 730288. DOI: https://doi.org/10.3389/fcimb.2021.730288

Lemkul, J.A. (2018). From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package, v1.0”. Living Journal of Computational Molecular Science, 1(1), 5068. DOI: https://doi.org/10.33011/livecoms.1.1.5068

Lokhande, K., Nawani, N.K., Venkateswara, S., & Pawar, S. (2022). Biflavonoids from Rhus succedanea as probable natural inhibitors against SARS-CoV-2: a molecular docking and molecular dynamics approach. Journal of Biomolecular Structure Dynamics, 40(10), 4376-4388. DOI: https://doi.org/10.1080/07391102.2020.1858165

Mabhiza, D., Chitemerere, T., & Mukanganyama, S. (2016). Antibacterial properties of alkaloid extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. International Journal of Medicinal Chemistry, 2016(1), 6304163. DOI: https://doi.org/10.1155/2016/6304163

Mahdavi, S., Kheyrollahi, M., Sheikhloei, H., & Isazadeh, A. (2019). Antibacterial and antioxidant activities of essential oil on food borne bacteria. The Open Microbiology Journal, 13(1), 81-85. DOI: https://doi.org/10.2174/1874285801913010081

Mayasari, D., Murti, Y.B., Pratiwi, S.U.T., Sudarsono, S., Hanna, G., & Hamann, M.T. (2022). TLC-Based Fingerprinting Analysis of the Geographical Variation of Melastoma malabathricum in Inland and Archipelago Regions: A Rapid and Easy-to-Use Tool for Field Metabolomics Studies. Journal of Natural Products, 85(1), 292-300. DOI: https://doi.org/10.1021/acs.jnatprod.1c00622

Mostafazadeh, M., Sadeghi, H., Sadeghi, H., Zarezade, V., Hadinia, A., & Panahi Kokhdan, E. (2022). Further evidence to support acute and chronic anti-inflammatory effects of Nasturtium officinale. Research in Pharmaceutical Sciences, 17(3), 305-314. DOI: https://doi.org/10.4103/1735-5362.343084

Nair, J.J., Wilhelm, A., Bonnet, S.L., & van Staden, J. (2017). Antibacterial constituents of the plant family Amaryllidaceae. Bioorganic & Medicinal Chemistry Letters, 27(22), 4943-4951. DOI: https://doi.org/10.1016/j.bmcl.2017.09.052

Negi, N., Upadhyay, S., & Rana, M. (2024a). An Overview on Phytopharmacological Perspectives of a Potential plant Species: Nasturtium officinale. Systematic Reviews in Pharmacy, 15(8), 257-262.

Negi, N., Upadhyay, S., & Rana, M. (2024b). Investigation of in vitro anticancer potential and phytochemical screening of Nasturtium officinale. International Journal of Zoological Investigations, 10(1), 537-544. DOI: https://doi.org/10.33745/ijzi.2024.v10i01.058

Nocedo-Mena, D., Garza-González, E., González-Ferrara, M., & Del Rayo Camacho-Corona, M. (2020). Antibacterial Activity of Cissus incisa Extracts against Multidrug- Resistant Bacteria. Current Topics in Medicinal Chemistry, 20(4), 318-323. DOI: https://doi.org/10.2174/1568026619666191121123926

Notarte, K.I.R., Quimque, M.T.J., Macaranas, I.T., Khan, A., Pastrana, A.M., et al. (2023). Attenuation of Lipopolysaccharide-induced Inflammatory Responses through Inhibition of the NF-κB Pathway and the Increased NRF2 Level by a Flavonol-enriched n-Butanol Fraction from Uvaria alba. ACS Omega, 8(6), 5377–5392. DOI: https://doi.org/10.1021/acsomega.2c06451

Paggi, J.M., Pandit, A., & Dror, R.O. (2024). The Art and Science of Molecular Docking. Annual Review of Biochemistry, 93(1), 389-410. DOI: https://doi.org/10.1146/annurev-biochem-030222-120000

Prinsa., Saha, S., Bulbul, M.Z.H., Ozeki, Y., Alamri, M.A., & Kawsar, S.M.A. (2024). Flavonoids as potential KRAS inhibitors: DFT, molecular docking, molecular dynamics simulation and ADMET analyses. Journal of Asian Natural Product Research, 26(8), 955-992. DOI: https://doi.org/10.1080/10286020.2024.2343821

Priscilla, K., Sharma, V., Gautam, A., Gupta, P., Dagar, R., Kishore, V., & Kumar, R. (2024). Carotenoid Extraction from Plant Tissues. Methods in Molecular Biology, 2788, 3-18. DOI: https://doi.org/10.1007/978-1-0716-3782-1_1

Rigby, S.P. (2024). Uses of Molecular Docking Simulations in Elucidating Synergistic, Additive, and/or Multi-Target (SAM) Effects of Herbal Medicines. Molecules, 29(22), 5406. DOI: https://doi.org/10.3390/molecules29225406

Shakerinasab, N., Mottaghipisheh, J., Eftekhari, M., Sadeghi, H., Bazarganipour, F., Abbasi, R., Doustimotlagh, A.H. & Iriti, M. (2024). The hydroalcoholic extract of Nasturtium officinale reduces oxidative stress markers and increases total antioxidant capacity in patients with asthma. Journal of Ethnopharmacology, 318, 116862. DOI: https://doi.org/10.1016/j.jep.2023.116862

Sherer, B.A., Hull, K., Green, O., Basarab, G., Hauck, S., et al. (2011). Pyrrolamide DNA gyrase inhibitors: Optimization of antibacterial activity and efficacy. Bioorganic & medicinal chemistry letters, 21(24), 7416-7420. DOI: https://doi.org/10.1016/j.bmcl.2011.10.010

Suarez, A.F.L., Tirador, A.D.G., Villorente, Z.M., Bagarinao, C.F., Sollesta, J.V.N., et al. (2021). The Isorhamnetin-Containing Fraction of Philippine Honey Produced by the Stingless Bee Tetragonula biroi Is an Antibiotic against Multidrug-Resistant Staphylococcus aureus. Molecules, 26(6), 1688. DOI: https://doi.org/10.3390/molecules26061688

Tabesh, M., Sh, M.E., Etemadi, M., Naddaf, F., Heidari, F., & Alizargar, J. (2022). The antibacterial activity of Nasturtium officinale extract on common oral pathogenic bacteria. Nigerian Journal of Clinical Practice, 25(9), 1466-1475. DOI: https://doi.org/10.4103/njcp.njcp_1887_21

Tittikpina, N.K., Nana, F., Fontanay, S., Philippot, S., Batawila, K., et al. (2018). Antibacterial activity and cytotoxicity of Pterocarpus erinaceus Poir extracts, fractions and isolated compounds. Journal of Ethnopharmacology, 212, 200-207. DOI: https://doi.org/10.1016/j.jep.2017.10.020

Yu, D., Li, H., Liu, Y., Yang, X., Yang, W., Fu, Y., Zuo, Y.A., & Huang, X. (2024). Application of the molecular dynamics simulation GROMACS in food science. Food Research International, 190, 114653. DOI: https://doi.org/10.1016/j.foodres.2024.114653

Zhao, S., Baik, O.D., Choi, Y.J., & Kim, S.M. (2014). Pretreatments for the efficient extraction of bioactive compounds from plant-based biomaterials. Critical Reviews in Food Science and Nutrition, 54(10), 1283-97. DOI: https://doi.org/10.1080/10408398.2011.632698

Zhong, H., Liu, H., & Liu, H. (2024). Molecular Mechanism of Tau Misfolding and Aggregation: Insights from Molecular Dynamics Simulation. Current Medicinal Chemistry, 31(20), 2855-2871. DOI: https://doi.org/10.2174/0929867330666230409145247

Downloads

Published

2025-01-15

How to Cite

Negi, N., Upadhyay, S., Joshi, B. C., Prinsa, & Saha, S. (2025). In-vitro antibacterial activity, Molecular docking, and MD Simulation Analysis of Phytoconstituents of Nasturtium officinale. Journal of Experimental Biology and Agricultural Sciences, 12(6), 838–849. https://doi.org/10.18006/2024.12(6).838.849

Issue

Section

RESEARCH ARTICLES

Categories