Effects of Probiotics, Prebiotics and Synbiotic Supplementation on Cognitive Impairment: A Review
DOI:
https://doi.org/10.18006/2022.10(1).1.11Keywords:
Learning, Memory, Probiotics, Lactobacillus, Bifidobacterium, Alzheimer’s diseaseAbstract
Learning and memory formation are the two essential terms widely used in the field of cognition. Learning can be defined as acquiring new information or skills. Memory is formed due to changes in the neuronal system as a result of continuous stimulus exposure. Both learning and memory are fundamental processes that occur in all living organisms. Memory is broadly categorized into two different categories such as short-term memory (STM) and long-term memory (LTM). Compared to STM, LTM plays an essential role in the day-to-day activities of different living organisms. LTM requires RNA and protein synthesis-dependent mechanisms for memory storage, which lasts up to their lifetime. LTM formation is initiated when the neurotransmitters are released from the presynaptic neuron; further released neurotransmitters bind with their respective receptors present in the postsynaptic neuron and initiate the calcium influx. Calcium influx results in the further activation of molecules involved in the neuronal signaling pathway and results in memory formation. Present review reports the outcome of recent studies which showed that probiotic supplement is responsible for the retrieval of memory in case of memory impairment and its uses in the treatment of neurodegenerative disorders like mild cognitive impairment (MCI), Alzheimer's disease (AD). Recent research studies were shown that probiotic microorganisms may positively regulate neurotransmitter release and increase the calcium influx, brain derived neurotrophic factor (BDNF), and N-methyl-D-aspartate receptor (NMDAR) and plays a pivotal role in the LTM formation in gut-dysbiosed & memory-impaired animal models.
References
Abraham W.C., Jones, O.D., & Glanzman, D.L. (2019). Is plasticity of synapses the mechanism of long-term memory storage? Npj Science of learning, 4, 9. DOI: https://doi.org/10.1038/s41539-019-0048-y
Abraham, W.C., & Williams, J.M. (2007). LTP maintenance and its protein synthesis-dependence. Neurobiology of Learning and Memory, 89,260-268. DOI: https://doi.org/10.1016/j.nlm.2007.10.001
Adell, A., Celada, P., Abellán, M.T., & Artigas, F. (2002). Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Research Reviews, 39, 154-180. DOI: https://doi.org/10.1016/S0165-0173(02)00182-0
Altman, H.J., & Normile, H.J. (1988). What is the nature of the role of the serotonergic nervous system in learning and memory: prospects for development of an effective treatment strategy for senile dementia. Neurobiology of Aging, 9, 627-638. DOI: https://doi.org/10.1016/S0197-4580(88)80124-6
Angelucci, F., Cehova, K., Amlerova, J., & Hort, J. (2019). Antibiotics, gut microbiota, and alzheimer’s disease. Journal of Neuroinflammation, 16, 108. DOI: https://doi.org/10.1186/s12974-019-1494-4
Asl, Z.R., Sepehri, G., & Salami, M. (2019). Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of alzheimer’s disease. Behavioural Brain Research, 376, 112183. DOI: https://doi.org/10.1016/j.bbr.2019.112183
Bai Y., & Suzuki, T. (2020). Activity-Dependent Synaptic Plasticity in Drosophla melanogaster. Frontiers in physiology, 11, 161. DOI: https://doi.org/10.3389/fphys.2020.00161
Baierle, M., Nascimento, S.N., Moro, A.M., Brucker, et al. (2015). Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly. Oxidative Medicine and Cellular Longevity, 2015, 804198. DOI: https://doi.org/10.1155/2015/804198
Bailey, M.T, & Coe, C.L. (1999). Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Developmental Psychobiology, 35, 146-155. DOI: https://doi.org/10.1002/(SICI)1098-2302(199909)35:2<146::AID-DEV7>3.0.CO;2-G
Baker-Herman, T.L., & Mitchell, G.S. (2002). Phrenic long-term facilitation requires spinal serotonin receptor activation and protein synthesis. Journal of Neuroscience, 22, 6239-6246. DOI: https://doi.org/10.1523/JNEUROSCI.22-14-06239.2002
Bambah-Mukku, D., Travaglia, A., Chen, D.Y., Pollonini, G., & Alberini, C.M. (2014). A positive autoregulatory BDNF feedback loop via C/EBPß mediates hippocampal memory consolidation. Journal of Neuroscience, 34, 12547-12559. DOI: https://doi.org/10.1523/JNEUROSCI.0324-14.2014
Barrett, E. (2012). γ- Aminobutyric acid production by culturable bacteria from the human intestine. Journal of Applied Microbiology, 113, 411-417. DOI: https://doi.org/10.1111/j.1365-2672.2012.05344.x
Bermúdez-Humarán, L.G., Salinas, E., Ortiz, G.G., Ramirez-Jirano, L.J., Morales, J.A., & Bitzer-Quintero, O.K. (2019). From Probiotics to Psychobiotics: Live Beneficial Bacteria Which Act on the Brain-Gut Axis. Nutrients, 11, 890. DOI: https://doi.org/10.3390/nu11040890
Buffington, S.A., Huang, W., & Costa-Mattioli, M. (2014). Translational control in synaptic plasticity and cognitive dysfunction. Annual Review of Neuroscience, 37,17-38. DOI: https://doi.org/10.1146/annurev-neuro-071013-014100
Bye, C.M., & McDonald, R.J. (2019). A Specific Role of Hippocamal NMDA Receptors and Arc Protein in Rapid Encoding of Novel Environmental Representations and a More General Long-Term Consolidation function. Frontiers in Behavioral Neuroscience, 13, 8. DOI: https://doi.org/10.3389/fnbeh.2019.00008
Canani, R.B., Filippis, F.D., Nocerino, R., & Paparo, L. (2018). Gut microbiota composition and butyrate production in children affected by non-IgE-mediated cow’s milk allergy. Scientific Reports, 8, 12500. DOI: https://doi.org/10.1038/s41598-018-30428-3
Caracciolo, B., Xu, W., Collin, S., & Fratiglioni, L. (2014). Cognitive decline, dietary factors and gut-brain interactions. Mechanisms of Ageing and Development, 136-137,59-69. DOI: https://doi.org/10.1016/j.mad.2013.11.011
Chen, D., Yang, X., Yang, J., Lai, G., et al. (2017). Prebiotic effect of fructooligosaccharides from Morinda officinalis on alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Frontiers in Aging Neuroscience, 9, 403. DOI: https://doi.org/10.3389/fnagi.2017.00403
Choi, H.H., & Choi, Y.S. (2016). Fecal microbiota transplantation: current applications, effectiveness and future perspectives. Clinical Endoscopy, 49, 257-265. DOI: https://doi.org/10.5946/ce.2015.117
Dale, N., Kandel, E.R., & Schacher, S. (1987). Serotonin produces long-term changes in the excitability of aplysia sensory neurons in cuture that depend on new protein synthesis. Journal of Neuroscience, 7, 2232-8. DOI: https://doi.org/10.1523/JNEUROSCI.07-07-02232.1987
Daliri, E.B., Tango, C.N., Lee, B.H., & Oh, D. (2018). Human microbiome restoration and safety. International Journal of Medical Microbiology, 308, 487-497. DOI: https://doi.org/10.1016/j.ijmm.2018.05.002
den Besten, G., Eunen, K.V., Groen, A.K., Venema, K., Reijngoud, D.J., & Bakker B.M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54, 2325-2340. DOI: https://doi.org/10.1194/jlr.R036012
Di Filippo, M., Chiasserini, D., Gardoni, F., Viviani, B., et al. (2013). Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiology of Disease, 52, 229-236. DOI: https://doi.org/10.1016/j.nbd.2012.12.009
Dinan, T.G. (2015). Collective unconscious: how gut microbes shape human behavior. Journal of Psychiatric Research, 63, 1-9. DOI: https://doi.org/10.1016/j.jpsychires.2015.02.021
Dinan, T.G., & Cryan, J.F. (2017). The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterology Clinics of North America, 46, 77-89. DOI: https://doi.org/10.1016/j.gtc.2016.09.007
Duncan, S.H., Barcenilla, A., Stewart, C.S., Pryde, S.E., & Flint, H.J. (2002). Acetate utilization and butyeyl coenzyme A (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Applied and Environmental Microbiology, 68, 5186-90. DOI: https://doi.org/10.1128/AEM.68.10.5186-5190.2002
Evans, H.T., Blackmore, D., Götz, J., & Bodea, L. (2021). De novo proteomic methods for examining the molecular mechanisms underpinning long-term memory. Brain Research Bulletin, 169, 94-103. DOI: https://doi.org/10.1016/j.brainresbull.2020.12.015
Franco-Robles, E., & López, M. (2015). Implication of fructans in health: Immunomodulatory and antioxidant mechanisms. Scientific World Journal, 2015, 289267. DOI: https://doi.org/10.1155/2015/289267
Fung, T.C., Olson, C.A., & Hsiao, E.Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20, 145-155. DOI: https://doi.org/10.1038/nn.4476
Ganesh, A., Bogdanowicz, W., Balamurugan, K., Varman, D.R., & Rajan, K.E. (2012). Egr-1antisense oligodeoxynucleotide administration into the olfactory bulb impairs olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx. Brain Research, 1471, 33-45. DOI: https://doi.org/10.1016/j.brainres.2012.06.038
Ganesh, A., Bogdanowicz, W., Haupt, M, Marimuthu, G., & Rajan, K.E. (2010). Role of olfactory bulb serotonin in olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae). Brain Research, 1352, 108-117. DOI: https://doi.org/10.1016/j.brainres.2010.06.058
García-Pardo, M.P., Roger-Sanchez, C., Rodríguez-Arias, M., Miῆarro, J., & Aguilar, M.A. (2016). Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. European Journal of Pharmacology, 781, 10-24. DOI: https://doi.org/10.1016/j.ejphar.2016.03.065
Gareau, M.G. (2014). Microbiota-gut-brain axis and cognitive function. Advances in Experimental Medicine and Biology, 817, 357-371. DOI: https://doi.org/10.1007/978-1-4939-0897-4_16
Gentile, C.L., & Weir, T.L. (2018). The gut microbiota at the intersection of diet and human health. Science, 362, 776-780. DOI: https://doi.org/10.1126/science.aau5812
Gräff, J., & Tsai, L.H. (2013). Histone acetylation: molecular mnemonics on the chromatin. Nature Reveiws Neuroscience, 14, 97-111. DOI: https://doi.org/10.1038/nrn3427
Grenham, S., Clarke, G., Cryan, J.F., & Dinan, T.G. (2011). Brain-gut-microbe communication in health and disease. Frontiers in Physiology, 2, 94. DOI: https://doi.org/10.3389/fphys.2011.00094
Hadizadeh, M., Hamidi, G.A., & Salami, M. (2019). Probiotic supplementation improves the cognitive function and the anxiety-like behaviors in the stressed rats. Iranian Journal of Basic Medical Sciences, 22, 506-514.
Heyck, M., & Ibarra, A. (2019). Microbiota and memory: a symbiotic therapy to counter cognitive decline? Brain Circulation, 5, 124-129. DOI: https://doi.org/10.4103/bc.bc_34_19
Hillemacher, T., Bachmann, O., Kahl, K.G., & Frieling, H. (2018). Alcohol, microbiome, and their effect on psychiatric disorders. Progress in Neuropsychopharmacology and Biological Psychiatry, 85,105-115. DOI: https://doi.org/10.1016/j.pnpbp.2018.04.015
Huang, W., Guo, H., Deng, X., Zhu, T., et al. (2017). Short-chain fatty acids inhibit oxdative stress and inflammation in mesangial cells induced by high glucose and lipopolysaccharide. Experimental and Clinical Endocrinology and Diabetes, 125, 98-105. DOI: https://doi.org/10.1055/s-0042-121493
Igaz, L.M., Winograd, M., Cammarota, M., Izquierdo, L.A., et al. (2006). Early activation of extracellular signal-regulated kinase signaling pathway in the hippocampus is required for short-term memory formation of a fear-motivated learning. Cellular and Molecular Neurobiology, 2006, 989-1002. DOI: https://doi.org/10.1007/s10571-006-9099-8
Jiang, C., Li, G., Huang, P., Liu, Z., & Zhao, B. (2017). The gut microbiota and alzheimer’s disease. Journal of Alzheimer’s Disease, 58, 1-15. DOI: https://doi.org/10.3233/JAD-161141
FAO/WHO. (2002). working group report on drafting the guidelines for the evaluation of probiotics in food. London, Ontario, Canada, April 30 and May 1, 2002.
Kaczmarek, J.L., Thompson, S.V., & Holscher, H.D. (2017). Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutrition Reviews, 75, 673-682. DOI: https://doi.org/10.1093/nutrit/nux036
Kim, C.H., Park, J., & Kim, M. (2014). Gut microbiota-derived short-chain fatty acids. T cells and inflammation. Immune Network, 14, 277-288. DOI: https://doi.org/10.4110/in.2014.14.6.277
Kind, P.C., & Neumann, P.E. (2001). Plasticity: downstream of glutamate. Trends in Neuroscience, 24, 553-555. DOI: https://doi.org/10.1016/S0166-2236(00)01921-4
Kumar, A., & Mehta, M.R. (2011). Frequency-Dependent Changes in NMDAR-Dependent Synaptic plasticity. Frontiers in Computational Neuroscience, 5, 38. DOI: https://doi.org/10.3389/fncom.2011.00038
Kwok, L.Y., Wang, L., Zhang, J., Guo, Z., & Zhang, H. (2014). A pilot study on the effect of Lactobacillus casei Zhang on intestinal microbiota parameters in chinese subjects of different ages. Beneficial Microbes, 5, 2955-304. DOI: https://doi.org/10.3920/BM2013.0047
Landete, J.M., Ferrer, S., & Pardo, I. (2007). Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control, 18,1569-1574. DOI: https://doi.org/10.1016/j.foodcont.2006.12.008
Lin, H., Chen, C., de Belle, J.S., Tully, T., & Chiang, A. (2021). CREBA and CREBB in two identified neurons gate long-term memory formation in Drosophila. Proceedings of the National Academy of Sciencesof the United States of America, 118, e2100624118. DOI: https://doi.org/10.1073/pnas.2100624118
Linthorst, A.C., & Reul, J.M. (1998). Brain neurotransmission during peripheral inflammation. Annals of the New York Academy of Sciences, 840, 139-152. DOI: https://doi.org/10.1111/j.1749-6632.1998.tb09558.x
Louis, P., & Flint, H.J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19, 29-41. DOI: https://doi.org/10.1111/1462-2920.13589
Lovinger, D. M. (2010). Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology, 58, 951-961. DOI: https://doi.org/10.1016/j.neuropharm.2010.01.008
Lyte, M. (2011). Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays, 33, 574-581. DOI: https://doi.org/10.1002/bies.201100024
Ma, Q., Xing, C., Long, W., Wang, H.Y., Liu, Q., & Wang, R. (2019). Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. Journal of Neuroinflammation, 16, 53. DOI: https://doi.org/10.1186/s12974-019-1434-3
Malenka, R.C., Lancaster, B., & Zucker, R.S. (1992). Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron, 9,121-128. DOI: https://doi.org/10.1016/0896-6273(92)90227-5
Markowiak-Kopeć, P., & Ślizewska, K. (2020). The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intetinal Microbiome. Nutrients 12, 1107. DOI: https://doi.org/10.3390/nu12041107
Matsumoto, M., Kibe, R.K., Ooga, T., Aiba, Y., et al. (2013). Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Frontiers in System Neuroscience, 7,9. DOI: https://doi.org/10.3389/fnsys.2013.00009
Mayer, E.A., Tillisch, K., & Gupta, A. (2015). Gutbrain axis and the microbiota. Journal of Clinical Investigation, 125, 926-938. DOI: https://doi.org/10.1172/JCI76304
McCorvy, J.D., & Roth, B.L. (2015). Structure and function of serotonin G protein-coupled receptors. Pharmacology and Therapeutics, 150, 129-142. DOI: https://doi.org/10.1016/j.pharmthera.2015.01.009
Miranda, M., Morici, J.F., Zanoni, M.B., & Bekinschtein, P. (2019). Brain-Derived Neurotrophic Factor: A Key Molecule for memory in the Healthy and the Pathological Brain. Frontiers in Cellular Neuroscience, 13, 363. DOI: https://doi.org/10.3389/fncel.2019.00363
Misiak, B., Ƚoniewski, I., Marlicz, W., Freydeca, W., et al. (2020). The HPA axis dysregulation in severe mental illness: can we shift the blame to gut microbiota. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 102, 109951. DOI: https://doi.org/10.1016/j.pnpbp.2020.109951
Mohamed, H.A., Yao, W., Fioravante, D., Smolen, P., & Byrne, J.H. (2005). Camp-response elements in Aplysia creb1, creb2 and Ap-uch promoters: implications for feedback loops modulating long term memory. Journal of Biological Chemistry, 280, 27035-27043. DOI: https://doi.org/10.1074/jbc.M502541200
Moloney, R.D., Desbonnet, L., Clarke, G., Dinan, T.G., & Cryan, J.F. (2014). The microbiome: stress, health and disease. Mammalian Genome, 25, 49-74. DOI: https://doi.org/10.1007/s00335-013-9488-5
Montarolo, P.G., Goelet, P., Castellucci, V.F., Morgan, J., Kandel, E.R., & Schacher, S. (1986). A Critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science, 234, 1249-1254. DOI: https://doi.org/10.1126/science.3775383
Mora, F. (2013). Successful brain aging: plasticity, environmental enrichment and lifestyle. Dialogues in Clinical Neuroscience, 15, 45-52. DOI: https://doi.org/10.31887/DCNS.2013.15.1/fmora
Morshedi, M., Saghafi-Asl, M., & Hosseinifard, E.S. (2020). The potential therapeutic effects of the gut microbiome manipulation by symbiotic containing-Lactobacillus plantarum on neuropsychological performance of diabetic rats. Journal of Translational Medicine, 18, 18. DOI: https://doi.org/10.1186/s12967-019-02169-y
Mukherjee, S., Joardar, N., Sengupta, S., & Babu, S.P.S. (2018). Gut microbes as future therapeutics in treating inflammatory and infectious diseases: lessons from recent findings. The Journal of Nutritional Biochemistry, 61, 111-128. DOI: https://doi.org/10.1016/j.jnutbio.2018.07.010
Mukilan, M., Bogdanowicz, W., Marimuthu, G., & Rajan, K.E. (2018a).Odour discrimination learning in the Indian greater short-nosed fruit bat (Cynopterus sphinx): differential expression of Egr-1, C-fos and PP-1 in the olfactory bulb, amygdala and hippocampus. Journal of Experimental Biology, 221, jeb175364. DOI: https://doi.org/10.1242/jeb.175364
Mukilan, M., Rajathei, D.M., Jeyaraj, E., Kayalvizhi, N., & Rajan, K.E. (2018b). MiR-132 regulated olfactory bulb proteins linked to olfactory learning in greater short-nosed fruit bat Cynopterus sphinx. Gene, 671, 10-20. DOI: https://doi.org/10.1016/j.gene.2018.05.107
Mukilan, M., Varman, D.R., Sudhakar, S., & Rajan, K.E. (2015). Activity-dependent expression of miR-132 regulates immediate early gene induction during olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx. Neurobiology of Learning and Memory, 120, 41-51. DOI: https://doi.org/10.1016/j.nlm.2015.02.010
O’Donnell, M.P., Fox, B.W., Chao, P., Schroeder, F.C., & Sengupta, P. (2020). A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature, 583, 415-420. DOI: https://doi.org/10.1038/s41586-020-2395-5
Oliveros, E., Ramirez, M., Vazquez, E., Barranco, A., et al. (2016). Oral supplementation of 2’-fucosyllactose during lactation improves memory and learning in rats. The Journal of Nutritional Biochemistry, 31, 20-27. DOI: https://doi.org/10.1016/j.jnutbio.2015.12.014
Özoğul, F.K.E., özoğul, Y., & Özoğul, I. (2012). The function of lactic acid bacteria on biogenic amines production by food-borne pathogens in arginine decarboxylase broth. Food Science and Technology Research, 18,795-804. DOI: https://doi.org/10.3136/fstr.18.795
Park, J., Goergen, C.J., HogenEsch, H., & Kim, C.H. (2016). Chronically elevated levels of short-chain fatty acids induce T cell-mediated ureteristis and hydronephrosis. The Journal of Immunology, 196, 2388-400. DOI: https://doi.org/10.4049/jimmunol.1502046
Peng, S., Zhang, Y., Zhang, J., Wang, H., & Ren, B. (2010). ERK in learning and memory: a review of recent research. International Journal of Molecular Sciences, 11,222-232. DOI: https://doi.org/10.3390/ijms11010222
Petrof, E.O., Claud, E.C., Gloor, G.B., & Allen-Vercoe, E. (2013). Microbial ecosystems therapeutics: a new paradigm in medicine? Beneficial Microbes, 4, 53-65. DOI: https://doi.org/10.3920/BM2012.0039
Pineda-Rodriguez, B., Toscano-Tejeida, D., Garcia-Vences, E., Rodriquez-Barrera, R., et al. (2017). Anterior chamber associated immune deviation used as a neuroprotective strategy in rats with spinal cord injury. PLos One, 12, e0188506. DOI: https://doi.org/10.1371/journal.pone.0188506
Pokusaeva, K., Johnson, C., Luk, B., & Uribe, G. (2017). GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterology & Motility, 29, e12904. DOI: https://doi.org/10.1111/nmo.12904
Rezaeiasl, Z., Salami, M., & Sepehri, G. (2019). The effects of probiotic Lactobacillus and Bifidobacterium strains on memory and learning behavior, long-term potentiation (LTP), and some biochemical parameters in ß-amyloid-induced rat’s model of alzheimer’s disease. Preventive Nutrition and Food Science, 24, 265-273. DOI: https://doi.org/10.3746/pnf.2019.24.3.265
Roberts, A.C., Glanzman, D.L. (2003). Learning in aplysia: looking at synaptic plasticity from both sides. Trends in Neuroscience, 26, 662-670. DOI: https://doi.org/10.1016/j.tins.2003.09.014
Romo-Araiza, A., Gutiérrez-salmeán, G., Galván, E.J., Hernández-Frausto, M., et al. (2018). Probiotics and prebiotics as a therapeutic strategy to improve memory in a model of middle-aged rats. Frontiers in Aging Neuroscience, 10, 416. DOI: https://doi.org/10.3389/fnagi.2018.00416
Rosi, S., Ramirez-Amaya, V., Vazdarjanova, A., Worley, P.F., Barnes, C.A., & Wenk G.L. (2005). Neuroinflammation alters the hippocampal pattern of behaviorally induced Arc expression. Journal of Neuroscience, 25, 723-731. DOI: https://doi.org/10.1523/JNEUROSCI.4469-04.2005
Ryan, S.M., & Nolan, Y.M. (2016). Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate? Neuroscience & Biobehavioral Reviews, 61,121-131. DOI: https://doi.org/10.1016/j.neubiorev.2015.12.004
Salami, M (2021). Interplay of good bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations. Frontiers in Neuroscience, 15, 613120. DOI: https://doi.org/10.3389/fnins.2021.613120
Sarkar, A., Lehto, S.M., Harty, S., Dinan, T.G., Cryan, J.F., & Burnet, P.W.J. (2016). Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends in Neuroscience, 39, 763781. DOI: https://doi.org/10.1016/j.tins.2016.09.002
Savin, Z., Kivity, S., Yonath, H., & Yehuda, S. (2018). Smoking and the intestinal microbiome. Archives of Microbiology, 200, 677-684. DOI: https://doi.org/10.1007/s00203-018-1506-2
Schafe, G.E., & LeDoux, J.E. (2000). Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. Journal of Neuroscience, 20, RC96. DOI: https://doi.org/10.1523/JNEUROSCI.20-18-j0003.2000
Scharf, M.T., Woo, N.H., Lattal, K.M., Young, J.Z., Nguyen, P.V., & Abel, T. (2002). Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training. Journal of Neurophysiology, 87, 2770-2777. DOI: https://doi.org/10.1152/jn.2002.87.6.2770
Sherman, P.M., Ossa, J.C., & Johnson-Henry, K. (2009). Unraveling mechanisms of action of probiotics. Nutrition in Clinical Practice, 24, 10-14. DOI: https://doi.org/10.1177/0884533608329231
Shishov, V.A.K.T., Kudrin, V.S., Oleskin, A.V. (2009). Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Prikl Biokhim Microbiol, 45, 550-554. DOI: https://doi.org/10.1134/S0003683809050068
Song, L., Gao, Y., Zhang, X., & Le, W. (2013). Galactooligosaccharide improves the animal survival and alleviates motor neuron death in SOD1G93A mose model of amyotrophic lateral sclerosis. Neuroscience, 246,281-90. DOI: https://doi.org/10.1016/j.neuroscience.2013.05.002
Stanaszek, P.M., Snell, J.F., & O’Neill, J.J. (1977). Isolation, extraction, and measurement of acetylcholine from Lactobacillus plantarum. Applied and Environmental Microbiology, 34, 237-239. DOI: https://doi.org/10.1128/aem.34.2.237-239.1977
Stilling, R.M., de Wouw, M.V., Clarke, G., Stanton, C., et al. (2016). The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochemistry International, 99, 110-132. DOI: https://doi.org/10.1016/j.neuint.2016.06.011
Sweatt, J.D. (2001). The neuronal MAP kinase cascade: A biochemical signal integration systemsubserving synaptic plasticity and memory. Journal of Neurochemistry, 76, 1-10. DOI: https://doi.org/10.1046/j.1471-4159.2001.00054.x
Tajiri, N., Quach, D.M., Kaneko, Y., Wu, S., et al. (2017). NSI-19, a small molecule with neurogenic properties, exerts behavioral, and neurostructural benefits in stroke rats. Journal of Cellular Physiology, 232, 2731-2740. DOI: https://doi.org/10.1002/jcp.25847
Thiels, E., & Klann, E. (2001). Extracellular signal-regulated kinase, synaptic plasticity and memory. Reviews in Neuroscience, 12, 327-345. DOI: https://doi.org/10.1515/REVNEURO.2001.12.4.327
Tobin, M.K., Musaraca, K., Disouky, A., Shetti, A., et al. (2019). Human hippocampal neurogenesis persists in aged adults and alzheimer’s disease patients. Cell Stem Cell, 24,974-982. DOI: https://doi.org/10.1016/j.stem.2019.05.003
Tsavkelova, E.A., Botvinko, I.V., Kudrin, V.S., & Oleskin, A.V. (2000). Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Doklady Biochemistry and Biophysics, 372, 115-117.
Waltereit, R., Dammermann, B., Wulff, P., Scafidi, J., et al. (2001). Arg3.1/Arc mRNA induction by Ca2+ and AMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. Journal of Neuroscience, 21, 5484-5493. DOI: https://doi.org/10.1523/JNEUROSCI.21-15-05484.2001
Williams, S., Chen, L., Savignac, H., Tzortzis, G., Anthony, D.C., & Burnet, P.W.J. (2016). Neonatal prebiotic (BGOS) supplementation increases the levels of synaptophysin, GluN2A-subunits and BDNF proteins in the adult rat hippocampus. Synapse, 70, 121-4. DOI: https://doi.org/10.1002/syn.21880
Wong, C.B., Kobayashi, Y., & Xiao, J. (2018). Probiotics for preventing cognitive impairment in alzheimer’s disease. In Evrensel, A., & Ünsalver, B.O. (eds), Gut Microbiota, IntechOpen. DOI: 10.5772/intechopen.79088. DOI: https://doi.org/10.5772/intechopen.79088
Wong, C.G.T., Bottiglieri, T., & Snead, I.I.I. OC. (2003). GABA, γ-hydroxybutyric acid and neurological disease. Annals of Neurology, S6, S3-S12. DOI: https://doi.org/10.1002/ana.10696
Yang, N.J., & Chiu, I.M. (2017). Bacterial signaling to the nervous system through toxins and metabolites. Journal of Molecular Biology, 429, 587-605. DOI: https://doi.org/10.1016/j.jmb.2016.12.023
Yang, X., Yu, D., Xue, L., Li, H., et al. (2020). Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharmaceutica Sinicia B, 10,475-487. DOI: https://doi.org/10.1016/j.apsb.2019.07.001
Yoon, S., & Seger, R. (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors, 24, 21-44. DOI: https://doi.org/10.1080/02699050500284218
Yuste, R., & Bonhoeffer, T. (2001). Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annual Review of Neuroscience, 24,1071-1089. DOI: https://doi.org/10.1146/annurev.neuro.24.1.1071
Zhao, J., Wei, B., Xiao, S., Lan, X., et al. (2019). Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Scientific Reports, 9, 5790. DOI: https://doi.org/10.1038/s41598-019-42286-8
Zhao, X., Yuan, L., Feng, L., Xi, Y., et al. (2015). Association of dietary intake and lifestyle pattern with mild cognitive impairment in the elderly. The Journal of Nutrition, Health & Aging, 19, 164-168. DOI: https://doi.org/10.1007/s12603-014-0524-2
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.