CRISPR driven Cyanobacterial Metabolic Engineering and its role in metabolite production

Authors

DOI:

https://doi.org/10.18006/2024.12(3).446.456

Keywords:

Cyanobacteria, Metabolic engineering, CRISPR-Cas, gRNA, Biofuel

Abstract

Recently, the advancement in sustainable methods for fabricating novel metabolites is one of the prime challenges in metabolic engineering. The current increase in fuel prices and its limited supply made the scientific community more concerned about finding an alternate source of fuel generation. Scientists are now interested in biofuel because of its low cost and ease of production. An intriguing area of research in metabolic engineering is using imaginative manipulation of microbes to manufacture chemicals or molecules of commercial importance. One such bacterium whose commercial potential is rapidly attracting the attention of the scientific fraternity is Cyanobacteria, which are either single-celled or multi-cellular filamentous photosynthetic organisms that can also fix CO2. The generation of biofuel has been transformed by the use of CRISPR (clustered regularly interspaced short palindromic repeats) technology in cyanobacteria, which allows for precise genetic alterations to improve their metabolic processes. Scientists can effectively modify the cyanobacterial genome using CRISPR to increase lipid accumulation, maximize photosynthetic efficiency, and enhance stress tolerance. Cyanobacteria have gained attention in the scientific community as a potential source for biofuel production due to several advantageous characteristics like photosynthetic capacity, genetic manipulation, lack of dependency on fertile land, high biomass yield, versatile biofuel production etc. which our present manuscript aims to catalogue. Cyanobacteria play a pivotal role in developing environmentally friendly energy solutions by converting CO2 into renewable energy sources, serving as a flexible platform for producing different types of biofuels and reducing greenhouse gas emissions.

References

Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., et al. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353(6299), aaf5573. DOI: https://doi.org/10.1126/science.aaf5573

Babele, P. K., Srivastava, A., & Young, J. D. (2023). Metabolic flux phenotyping of secondary metabolism in cyanobacteria. Trends in Microbiology, 31, (11), 1118-1130. DOI: https://doi.org/10.1016/j.tim.2023.05.005

Baldanta, S., Guevara, G., & Navarro-Llorens, J. M. (2022). SEVA-Cpf1, a CRISPR-Cas12a vector for genome editing in cyanobacteria. Microbial cell factories, 21(1), 103. https://doi.org/10.1186/s12934-022-01830-4 DOI: https://doi.org/10.1186/s12934-022-01830-4

Barakate, A., & Stephens, J. (2016). An overview of CRISPR-based tools and their improvements: new opportunities in understanding plant–pathogen interactions for better crop protection. Frontiers in Plant Science, 7, 765. DOI: https://doi.org/10.3389/fpls.2016.00765

Bashir, F., Bashir, A., Bouaïcha, N., Chen, L., Codd, G. A., et al. (2023). Cyanotoxins, biosynthetic gene clusters, and factors modulating cyanotoxin biosynthesis. World Journal of Microbiology and Biotechnology, 39(9), 241. DOI: https://doi.org/10.1007/s11274-023-03652-x

Behler, J., Vijay, D., Hess, W. R., & Akhtar, M. K. (2018). CRISPR-based technologies for metabolic engineering in cyanobacteria. Trends in Biotechnology, 36(10), 996-1010. DOI: https://doi.org/10.1016/j.tibtech.2018.05.011

Bessou, C., Ferchaud, F., Gabrielle, B., & Mary, B. (2011). Biofuels, greenhouse gases and climate change. Sustainable Agriculture, 2, 365-468. DOI: https://doi.org/10.1007/978-94-007-0394-0_20

Carroll, A. L., Case, A. E., Zhang, A., & Atsumi, S. (2018). Metabolic engineering tools in model cyanobacteria. Metabolic Engineering, 50, 47-56. DOI: https://doi.org/10.1016/j.ymben.2018.03.014

Cassier-Chauvat, C., Blanc-Garin, V., & Chauvat, F. (2021). Genetic, genomics, and responses to stresses in cyanobacteria: biotechnological implications. Genes, 12(4), 500. DOI: https://doi.org/10.3390/genes12040500

Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 102(1), 71-81. DOI: https://doi.org/10.1016/j.biortech.2010.06.159

Chen, H., Bjerknes, M., Kumar, R., & Jay, E. (1994). Determination of the optimal aligned spacing between the Shine–Dalgarno sequence and the translation initiation codon of Escherichia coli m RNAs. Nucleic Acids Research, 22(23), 4953-4957. DOI: https://doi.org/10.1093/nar/22.23.4953

Cho, S., Choe, D., Lee, E., Kim, S. C., Palsson, B., & Cho, B. K. (2018). High-level dCas9 expression induces abnormal cell morphology in Escherichia coli. ACS Synthetic Biology, 7(4), 1085-1094. DOI: https://doi.org/10.1021/acssynbio.7b00462

Choi, K. R., & Lee, S. Y. (2016). CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnology advances, 34(7), 1180–1209. https://doi.org/10.1016/j.biotechadv.2016.08.002 DOI: https://doi.org/10.1016/j.biotechadv.2016.08.002

Chorus, I., Fastner, J., & Welker, M. (2021). Cyanobacteria and cyanotoxins in a changing environment: Concepts, controversies, challenges. Water, 13(18), 2463. DOI: https://doi.org/10.3390/w13182463

Currie, M. F., Persaud, D. M., Rana, N. K., Platt, A. J., Beld, J., & Jaremko, K. L. (2020). Synthesis of an acyl-acyl carrier protein synthetase inhibitor to study fatty acid recycling. Scientific Reports, 10(1), 17776. DOI: https://doi.org/10.1038/s41598-020-74731-4

Díaz-Santos, E. (2019). Towards the genetic manipulation of microalgae to improve the carbon dioxide fixation and the production of biofuels: Present status and future prospect. In: M. Alam, & Wang, Z. (eds), Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-13-2264-8_7 DOI: https://doi.org/10.1007/978-981-13-2264-8_7

Farrokh, P., Sheikhpour, M., Kasaeian, A., Asadi, H., & Bavandi, R. (2019). Cyanobacteria as an eco‐friendly resource for biofuel production: a critical review. Biotechnology Progress, 35(5), e2835. DOI: https://doi.org/10.1002/btpr.2835

Fontana, J., Sparkman-Yager, D., Zalatan, J. G., & Carothers, J. M. (2020). Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering. Current Opinion in Biotechnology, 64, 190-198. DOI: https://doi.org/10.1016/j.copbio.2020.04.005

Georg, J., Dienst, D., Schürgers, N., Wallner, T., Kopp, D., et al. (2014). The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria. The Plant Cell, 26(9), 3661-3679. DOI: https://doi.org/10.1105/tpc.114.129767

Gheewala, S. H., Damen, B., & Shi, X. (2013). Biofuels: economic, environmental and social benefits and costs for developing countries in Asia. Wiley Interdisciplinary Reviews: Climate Change, 4(6), 497-511. DOI: https://doi.org/10.1002/wcc.241

Gosavi, G., Yan, F., Ren, B., Kuang, Y., Yan, D., Zhou, X., & Zhou, H. (2020). Applications of CRISPR technology in studying plant-pathogen interactions: Overview and perspective. Phytopathology Research, 2(1), 1-9.https://doi.org/10.1186/s42483-020-00060-z DOI: https://doi.org/10.1186/s42483-020-00060-z

Ishino, Y., Krupovic, M., & Forterre, P. (2018). History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. Journal of Bacteriology, 200(7), 10-1128. DOI: https://doi.org/10.1128/JB.00580-17

Javed, M.R., Noman, M., Shahid, M., Ahmed, T., Khurshid, M., et al. (2019). Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiological Research, 219, 1-11. DOI: https://doi.org/10.1016/j.micres.2018.10.010

Jeong, Y., Cho, S.H., Lee, H., Choi, H.K., Kim, D.M., et al. (2020). Current status and future strategies to increase secondary metabolite production from cyanobacteria. Microorganisms, 8(12), 1849. DOI: https://doi.org/10.3390/microorganisms8121849

Kaczmarzyk, D., & Fulda, M. (2010). Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiology, 152(3), 1598-1610. DOI: https://doi.org/10.1104/pp.109.148007

Kaczmarzyk, D., Cengic, I., Yao, L., & Hudson, E. P. (2018). Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metabolic Engineering, 45, 59-66. DOI: https://doi.org/10.1016/j.ymben.2017.11.014

Khan, A. Z., Bilal, M., Mehmood, S., Sharma, A., & Iqbal, H. M. (2019). State-of-the-art genetic modalities to engineer cyanobacteria for sustainable biosynthesis of biofuel and fine-chemicals to meet bio–economy challenges. Life, 9(3), 54. DOI: https://doi.org/10.3390/life9030054

Knoot, C. J., Ungerer, J., Wangikar, P. P., & Pakrasi, H. B. (2018). Cyanobacteria: promising biocatalysts for sustainable chemical production. Journal of Biological Chemistry, 293(14), 5044-5052. DOI: https://doi.org/10.1074/jbc.R117.815886

Konstantakos, V., Nentidis, A., Krithara, A., & Paliouras, G. (2022). CRISPR–Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Research, 50(7), 3616-3637. DOI: https://doi.org/10.1093/nar/gkac192

Korkina, L. G. (2007). Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cellular and Molecular Biology, 53(1), 15-25.

La Rocca, N., Moro, I., & Rascio, N. (2018). Excess Light and Limited Carbon Two Problems with Which Cyanobacteria and Microalgae Cope. In P. Mohammad (Ed.) Handbook of Photosynthesis (pp. 369-396). CRC Press, eISBN-9781315372136. DOI: https://doi.org/10.1201/9781315372136. DOI: https://doi.org/10.1201/9781315372136-21

Leao, T., Castelão, G., Korobeynikov, A., Monroe, E. A., Podell, S., et al. (2017). Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus Moorea. Proceedings of the National Academy of Sciences, 114(12), 3198-3203. DOI: https://doi.org/10.1073/pnas.1618556114

Lee, T. M., Lin, J. Y., Tsai, T. H., Yang, R. Y., & Ng, I. S. (2023). Clustered regularly interspaced short palindromic repeats (CRISPR) technology and genetic engineering strategies for microalgae towards carbon neutrality: A critical review. Bioresource Technology, 368, 128350. DOI: https://doi.org/10.1016/j.biortech.2022.128350

Liu, X., Sheng, J., & Curtiss III, R. (2011). Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences, 108(17), 6899-6904. DOI: https://doi.org/10.1073/pnas.1103014108

Martin, F., Sánchez-Hernández, S., Gutiérrez-Guerrero, A., Pinedo-Gomez, J., & Benabdellah, K. (2016). Biased and unbiased methods for the detection of off-target cleavage by CRISPR/Cas9: an overview. International Journal of Molecular Sciences, 17(9), 1507. DOI: https://doi.org/10.3390/ijms17091507

Martin-Pascual, M., Batianis, C., Bruinsma, L., Asin-Garcia, E., Garcia-Morales, L., et al. (2021). A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnology advances, 49, 107732. https://doi.org/10.1016/j.biotechadv.2021.107732 DOI: https://doi.org/10.1016/j.biotechadv.2021.107732

MehdizadehAllaf, M., & Peerhossaini, H. (2022). Cyanobacteria: model microorganisms and beyond. Microorganisms, 10(4), 696. DOI: https://doi.org/10.3390/microorganisms10040696

Méjean, A., & Ploux, O. (2013). A genomic view of secondary metabolite production in cyanobacteria. Advances in Botanical Research, 65, 189-234. DOI: https://doi.org/10.1016/B978-0-12-394313-2.00006-8

Miao, R., Wegelius, A., Durall, C., Liang, F., Khanna, N., &Lindblad, P. (2017). Engineering cyanobacteria for biofuel production. In P. Hallenbeck, (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-46261-5_11 DOI: https://doi.org/10.1007/978-3-319-46261-5_11

Mizutani, M., & Ohta, D. (2010). Diversification of P450 genes during land plant evolution. Annual Review of Plant Biology, 61, 291-315. DOI: https://doi.org/10.1146/annurev-arplant-042809-112305

Nugumanova, G., Ponomarev, E. D., Askarova, S., Fasler-Kan, E., & Barteneva, N. S. (2023). Freshwater cyanobacterial toxins, cyanopeptides and neurodegenerative diseases. Toxins, 15(3), 233. DOI: https://doi.org/10.3390/toxins15030233

Osakabe, Y., & Osakabe, K. (2015). Genome editing with engineered nucleases in plants. Plant and Cell Physiology, 56(3), 389-400. DOI: https://doi.org/10.1093/pcp/pcu170

Pasin, F., Bedoya, L. C., Bernabé-Orts, J. M., Gallo, A., Simón-Mateo, C., Orzaez, D., & García, J. A. (2017). Multiple T-DNA delivery to plants using novel mini binary vectors with compatible replication origins. ACS Synthetic Biology, 6(10), 1962-1968. DOI: https://doi.org/10.1021/acssynbio.6b00354

Pattharaprachayakul, N., Lee, M., Incharoensakdi, A., & Woo, H. M. (2020). Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme and Microbial Technology, 140, 109619. DOI: https://doi.org/10.1016/j.enzmictec.2020.109619

Quintana, N., Van der Kooy, F., Van de Rhee, M. D., Voshol, G. P., & Verpoorte, R. (2011). Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Applied Microbiology and Biotechnology, 91, 471-490. DOI: https://doi.org/10.1007/s00253-011-3394-0

Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486-501. DOI: https://doi.org/10.1128/EC.00364-09

Rafeeq, H., Afsheen, N., Rafique, S., Arshad, A., Intisar, M., et al. (2023). Genetically engineered microorganisms for environmental remediation. Chemosphere, 310, 136751. DOI: https://doi.org/10.1016/j.chemosphere.2022.136751

Ratner, H. K., Sampson, T. R., & Weiss, D. S. (2016). Overview of CRISPR–Cas9 biology. Cold Spring Harbor Protocols, 2016(12).doi:10.1101/pdb.top088849. DOI: https://doi.org/10.1101/pdb.top088849

Santos-Merino, M., Gutiérrez-Lanza, R., Nogales, J., García, J. L., & de la Cruz, F. (2022). Synechococcus elongatus PCC 7942 as a platform for bioproduction of omega-3 fatty acids. Life, 12(6), 810. DOI: https://doi.org/10.3390/life12060810

Santos-Merino, M., Singh, A. K., & Ducat, D. C. (2019). New applications of synthetic biology tools for cyanobacterial metabolic engineering. Frontiers in Bioengineering and Biotechnology, 7, 33. DOI: https://doi.org/10.3389/fbioe.2019.00033

Satta, A., Esquirol, L., & Ebert, B. E. (2023). Current metabolic engineering strategies for photosynthetic bioproduction in cyanobacteria. Microorganisms, 11(2), 455. DOI: https://doi.org/10.3390/microorganisms11020455

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., et al. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20-43. DOI: https://doi.org/10.1007/s12155-008-9008-8

Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., et al. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238-1240. DOI: https://doi.org/10.1126/science.1151861

Sebesta, J., Xiong, W., Guarnieri, M. T., & Yu, J. (2022). Biocontainment of genetically engineered algae. Frontiers in Plant Science, 13, 839446. DOI: https://doi.org/10.3389/fpls.2022.839446

Shanmugam, S., Hari, A., Pugazhendhi, A., & Kikas, T. (2023). Integrated Catalytic Upgrading of Biomass-Derived Alcohols for Advanced Biofuel Production. Energies, 16(13), 4998. DOI: https://doi.org/10.3390/en16134998

Shen, Y. (2014). Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Advances, 4(91), 49672-49722. DOI: https://doi.org/10.1039/C4RA06441K

Sheng, J., Vannela, R., & Rittmann, B. E. (2011). Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. Bioresource Technology, 102(2), 1697-1703. DOI: https://doi.org/10.1016/j.biortech.2010.08.007

Singh, V., Chaudhary, D. K., Mani, I., & Dhar, P. K. (2016). Recent advances and challenges of the use of cyanobacteria towards the production of biofuels. Renewable and Sustainable Energy Reviews, 60, 1-10. DOI: https://doi.org/10.1016/j.rser.2016.01.099

Sitther, V., Tabatabai, B., Fathabad, S. G., Gichuki, S., Chen, H., & Arumanayagam, A. C. S. (2020). Cyanobacteria as a biofuel source: advances and applications. Advances in Cyanobacterial Biology, 269-289. DOI: https://doi.org/10.1016/B978-0-12-819311-2.00018-8

Srivastava, R., Singh, N., Kanda, T., Yadav, S., Prajapati, R., Yadav, S., & Atri, N. (2022). Malleability of cyanobacteria for attaining sustainable development goals (SDG 7). In R. Srivastava (Ed.) Strategies to Achieve Sustainable Development Goals (SDGs): A Road Map for Global Development (pp.71-98). Nova Science Publisher, Inc. NY, USA DOI: https://doi.org/10.52305/YNDL2610. DOI: https://doi.org/10.52305/YNDL2610

Sun, J., Wang, Q., Jiang, Y., Wen, Z., Yang, L., Wu, J., & Yang, S. (2018). Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Microbial Cell Factories, 17, 1-17. DOI: https://doi.org/10.1186/s12934-018-0887-x

Tadić, V., Josipović, G., Zoldoš, V., & Vojta, A. (2019). CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Methods, 164, 109-119. DOI: https://doi.org/10.1016/j.ymeth.2019.05.003

Uniyal, A. P., Mansotra, K., Yadav, S. K., & Kumar, V. (2019). An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants. 3 Biotech, 9(6), 223. DOI: https://doi.org/10.1007/s13205-019-1760-2

Verma, P. (Ed.). (2020). Biorefineries: A step towards renewable and clean energy. Singapore: Springer. DOI: https://doi.org/10.1007/978-981-15-9593-6 DOI: https://doi.org/10.1007/978-981-15-9593-6

Wang, D., Jin, S., Lu, Q., & Chen, Y. (2023). Advances and challenges in CRISPR/Cas-based fungal genome engineering for secondary metabolite production: A review. Journal of Fungi, 9(3), 362. DOI: https://doi.org/10.3390/jof9030362

Wang, J., Zhang, X., Cheng, L., & Luo, Y. (2020). An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools. RNA Biology, 17(1), 13-22. DOI: https://doi.org/10.1080/15476286.2019.1669406

Wang, W., Ye, C., Liu, J., Zhang, D., Kimata, J. T., & Zhou, P. (2014). CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One, 9(12), e115987. DOI: https://doi.org/10.1371/journal.pone.0115987

Watanabe, S., Ohbayashi, R., Kanesaki, Y., Saito, N., Chibazakura, T., Soga, T., & Yoshikawa, H. (2015). Intensive DNA replication and metabolism during the lag phase in cyanobacteria. PLoS One, 10(9), e0136800. DOI: https://doi.org/10.1371/journal.pone.0136800

Wendt, K. E., Ungerer, J., Cobb, R. E., Zhao, H., & Pakrasi, H. B. (2016). CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microbial Cell Factories, 15, 1-8. DOI: https://doi.org/10.1186/s12934-016-0514-7

Wendt, K. E., Walker, P., Sengupta, A., Ungerer, J., & Pakrasi, H. B. (2022). Engineering natural competence into the fast-growing cyanobacterium Synechococcus elongatus strain UTEX 2973. Applied and Environmental Microbiology, 88(1), e01882-21. DOI: https://doi.org/10.1128/AEM.01882-21

Weng, Y, Chang, S., Cai, W., & Wang, C (2019). Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China. Applied Energy, 236, 514-525. DOI: https://doi.org/10.1016/j.apenergy.2018.12.024

Xue, Y., & He, Q. (2015). Cyanobacteria as cell factories to produce plant secondary metabolites. Frontiers in Bioengineering and Biotechnology, 3, 57. DOI: https://doi.org/10.3389/fbioe.2015.00057

Yao, L., Cengic, I., Anfelt, J., & Hudson, E. P. (2016). Multiple gene repression in cyanobacteria using CRISPRi. ACS Synthetic Biology, 5(3), 207-212. DOI: https://doi.org/10.1021/acssynbio.5b00264

Zerulla, K., Ludt, K., & Soppa, J. (2016). The ploidy level of Synechocystis sp. PCC 6803 is highly variable and is influenced by growth phase and by chemical and physical external parameters. Microbiology, 162(5), 730-739. DOI: https://doi.org/10.1099/mic.0.000264

Zhu, L. J. (2015). Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology. Frontiers in Biology, 10(4), 289-296. DOI: https://doi.org/10.1007/s11515-015-1366-y

Downloads

Published

2024-07-15

How to Cite

Chakraborty, S., Mukhopadhyay, R., Dutta, R., Samanta, S., Bagchi, A., Mitra, O., & Majumder, R. (2024). CRISPR driven Cyanobacterial Metabolic Engineering and its role in metabolite production. Journal of Experimental Biology and Agricultural Sciences, 12(3), 446–456. https://doi.org/10.18006/2024.12(3).446.456

Issue

Section

PROCEEDING OF BIONEXT-2023_REVIEW ARTICLES