Real-time and in silico-based characterization of the heat stress-responsive gene TaGASR1 from Indian bread wheat

Authors

DOI:

https://doi.org/10.18006/2024.12(5).730.741

Keywords:

High-temperature, Real-time PCR, in silico studies, Gibberellin-stimulated transcript, Genetic resource

Abstract

Wheat is a staple food for 80% of the global population, offering essential protein, calories, and nutrients. Earlier wheat heat interaction studies revealed that increasing temperatures can severely hinder plant growth and development, increasing overall productivity and sensitivity to extreme temperatures during seed emergence and anthesis. In this study, TaGASR1 (gibberellic acid-stimulated regulator 1), a potential candidate for heat stress resistance, was isolated, and its expression was found to be significantly greater in HD3086 wheat than in HD2894 wheat at both the seedling and anthesis stages after exposure to 42 °C heat stress (HS). Furthermore, in silico studies validated the molecular findings, revealing a CDS region of 297 nucleotides with 2 ORFs, with ~93% sequence similarity to the TaGASR1 gene from the TAM107 wheat variety. A 3D model of the target protein was designed using the C8C4P9.1 template, showing 95.92% sequence similarity and 100% query coverage with the gibberellin-stimulated transcript. Furthermore, studies of the conserved motifs and protein-protein interactions of the TaGASR1 protein have identified three major functional partners: cold acclimation proteins, ABA-inducible proteins, and protein phosphatase 2C, emphasizing its role in abiotic stress responses. Hence, the TaGASR1 gene is a promising candidate for further studies, as it positively responds under HS conditions. Therefore, future research should focus on its role across different species to cultivate heat-tolerant varieties, supporting sustainable development amid climate change. This would encourage breeders and researchers to use this gene to advance wheat crop development, considering current and anticipated environmental conditions.

Author Biographies

Satish Kumar, Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana India

Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana India

National Institute for Plant Biotechnology, Pusa Campus, New Delhi-110012, India

Jasdeep C. Padaria, National Institute for Plant Biotechnology, Pusa Campus, New Delhi-110012, India

National Institute for Plant Biotechnology, Pusa Campus, New Delhi-110012, India

Hardeep Singh Tuli, Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana India

Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana India

Pawan Kumar, Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, 7505101, Israel

Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, 7505101, Israel

Ritu Chauhan, Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India

Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India

Damandeep Kaur, University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, India

University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, India

Sachin Kumar Mandotra, Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana India

Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana India

Diwakar Aggarwal, Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana India

Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana India

References

Altenbach, S. B. (2012). New insights into the effects of high temperature, drought and postanthesis fertilizer on wheat grain development. Journal of Cereal Science, 56, 39–50. https://doi.org/10.1016/j.jcs.2011.12.012

Asseng, S., Foster, I., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17, 997–1012. https://doi.org/10.1111/j.1365-2486.2010.02262.x

Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., & Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic acids research, 37, W202-W208.

Bailey, T. L., Johnson, J., Grant, C. E., & Noble, W. S. (2015). The MEME suite. Nucleic acids research, 43(W1), W39-W49. https://doi.org/10.1093/nar/gkv416

Bhaskara, G. B., Nguyen, T. T., & Verslues, P. E. (2012). Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiology, 160, 379–395. https://doi.org/10.1104/pp.112.202408

Chapman, S. C., Chakraborty, S., Dreccer, M. F., & Howden, S. C. (2012). Plant adaptation to climate change-opportunities and priorities in breeding. Crop and Pasture Science, 63, 251–268. http://dx.doi.org/10.1071/CP11303

Cheng, X., Wang, S., Xu, D., Liu, X., Li, X., et al. (2019). Identification and Analysis of the GASR Gene Family in Common Wheat (Triticum aestivum L.) and Characterization of TaGASR34, a Gene Associated With Seed Dormancy and Germination. Frontiers in Genetics, 10, 980. https://doi.org/10.3389/fgene.2019.00980

Clavijo, B. J., Venturini, L., Schudoma, C., Accinelli, G. G., Kaithakottil, G., et al. (2017). An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 27(5), 885–896. https://doi.org/10.1101%2Fgr.217117.116

Duan, S., Liu, B., Zhang, Y., Li, G., & Guo, X. (2019). Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L. BMC in Genomics, 20, 257. https://doi.org/10.1186/s12864-019-5617-1

Essemine, J., Ammar, S., & Bouzid, S. (2010). Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussions and mechanisms of defence. Journal of Biological Sciences, 10, 565–572. http://dx.doi.org/10.3923/jbs.2010.565.572

Farhad, M., Kumar, U., Tomar, V., Bhati, P. K., Krishnan J, N., Barek, V., Brestic, M., & Hossain, A. (2023). Heat stress in wheat: a global challenge to feed billions in the current era of the changing climate. Frontiers in Sustainable Food Systems, 7, 1203721. https://doi.org/10.3389/fsufs.2023.1203721

Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011). Heat stress in wheat during reproductive and grain filling phases. Critical Reviews in Plant Science, 30, 491–507. https://doi.org/10.1080/07352689.2011.615687

Furukawa, T., Sakaguchi, N., & Shimada, H. (2006). Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles. Genes and Genetic System, 81, 171−180. https://doi.org/10.1266/ggs.81.171

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In: J.M Walker (Eds). The Proteomics Protocols Handbook (112, pp. 571–607). Springer Protocols Handbooks, Humana Press, New Jersey, USA. https://doi.org/10.1385/1-59259-890-0:571

Gawdiya, S., Kumar, D., Shivay, Y. S., Radheshyam, Nayak, S., Ahmed, B., &Mattar, M. A. (2023). Nitrogen-Driven Genotypic Diversity of Wheat (Triticum aestivum L.) Genotypes. Agronomy, 13(10), 2447. https://doi.org/10.3390/agronomy13102447

Grosse-Heilmann, M., Cristiano, E., Deidda, R., & Viola, F. (2024). Durum wheat productivity today and tomorrow: A review of influencing factors and climate change effects. Resources, Environment and Sustainability, 17, 100170. https://doi.org/10.1016/j.resenv.2024.100170

Guo, M., Lu, J. P., Zhai, Y. F., Chai, W. G., Gong, Z. H., & Lu, M. H. (2015). Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterization of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biology, 15, 1-20. https://doi.org/10.1186/s12870-015-0512-7

Hatfield, J. L., & John, H. P. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. https://doi.org/10.1016/j.wace.2015.08.001

Jamil, M., Ali, A., Gul, A., Ghafoor, A., Napar, A.A., Ibrahim, A. M., Naveed, N. H., Yasin, N. A., &Mujeeb-Kazi, A. (2019). Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. BMC in Plant Biology, 19, 1–18. https://doi.org/10.1186/s12870-019-1754-6

Jiang, C., Bi, Y., Mo, J., Zhang, R., Qu, M., Feng, S., & Essemine, J. (2020). Proteome and transcriptome reveal the involvement of heat shock proteins and antioxidant system in thermotolerance of Clematis florida. Scientific reports, 10(1), 8883. https://doi.org/10.1038/s41598-020-65699-2

Khaeim, H., Kende, Z., Balla, I., Gyuricza, C., Eser, A., &Tarnawa, Á. (2022). The effect of temperature and water stresses on seed germination and seedling growth of wheat (Triticum aestivum L.). Sustainability, 14(7), 3887. https://doi.org/10.3390/su14073887

Khalid, A., Hameed, A., &Tahir, M. F. (2023). Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Frontiers in Nutrition, 10, 1053196. https://doi.org/10.3389/fnut.2023.1053196

Kosova, K., Vitamvas, P., Prasil, I. T., & Renaut, J. (2011). Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. Journal of Proteomics, 74, 1301–1322. https://doi.org/10.1016/j.jprot.2011.02.006

Kumar, S., Vishwakarma, H., Loitongbam, A., &Aggarwal, D. (2023). Multiprotein- bridging factor 1c from Triticum aestivum L. confers tolerance to high-temperature stress in transgenic Nicotiana tabacum. Plant Cell Tissue and Organ Culture, 154, 443–456. https://doi.org/10.1007/s11240-023-02548-w

Liu, H., Zeng, B., Zhao, J., Yan, S., Wan, J., & Cao, Z. (2023). Genetic Research Progress: Heat tolerance in Rice. International Journal of Molecular Science, 24(8), 7140. https://doi.org/10.3390/ijms24087140

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408. https://doi.org/10.1006/ meth.2001.1262

Mao, Z. C., Zheng, J. Y., Wang, Y. S., Chen, G. H., Yang, Y. H., Feng, D. X., & Xie, B. Y. (2011). The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper. Phytoparasitica, 39, 151−164. http://dx.doi.org/10.1007/s12600-011-0149-5

Masarmi, A. G., Solouki, M., Fakheri, B., Kalaji, H. M., Mahgdingad, N., Golkari, S., &Yousef, A. F. (2023). Comparing the salinity tolerance of twenty different wheat genotypes on the basis of their physiological and biochemical parameters under NaCl stress. Plos One, 18(3), e0282606. https://doi.org/10.1371/journal.pone.0282606

Matsunaga, S., Yamasaki, Y., Toda, Y., Mega, R., Akashi, K., & Hjijoms, T. (2021). Stage-specific characterization of physiological response to heat stress in the wheat cultivar Norin 61. International Journal of Molecular Science, 22, 6942. https://doi.org/10.3390/ijms22136942

Moyano-Canete, E., Bellido, M. L., Garcia-Caparros, N., Medina-Puche, L., Amil-Ruiz, F., Gonzalez-Reyes, J. A., Caballero, J. L., Munoz-Blanco, J., & Blanco-Portales, R. (2013). FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle. Plant and Cell Physiology, 54, 218−236. https://doi.org/10.1093/pcp/pcs167

Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., Hodson, D., Dixon, J. M., Ortiz-Monasterio, J. I., & Reynolds, M. (2008). Climate change: can wheat beat the heat? Agriculture, Ecosystems and Environment, 126, 46– 58. https://doi.org/10.1016/j.agee.2008.01.019

Padaria, J. C., Bhatt, D., Biswas, K., Singh, G., & Raipuria, R. (2013). In-silico prediction of an uncharacterized protein generated from heat stress responsive SSH library in wheat (Triticum aestivum L.). Plant Omics Journal, 6, 150–156.

Padaria, J. C., Vishwakarma, H., Biswas, K., Jasrotia, R. S., & Singh, G. P. (2014). Molecular cloning and in-silico characterization of high temperature stress responsive pAPX gene isolated from heat tolerant Indian wheat cv. Raj 3765. BMC in Research Notes, 7, 713. https://doi.org/10.1186/1756-0500-7-713

Panzade, K. P., Vishwakarma, H., Awasthi, O. P., & Padaria, J. C. (2021). Molecular cloning and in silico analysis of heat stress responsive gene ClpB1 from Ziziphus nummularia genotypes. Indian Journal of Experimental Biology, 59, 316–327. http://nopr.niscpr.res.in/handle/123456789/57223

Park, S. W., Lee, B. H., Song, S. H., & Kim, M. K. (2023). Revisiting the Ramachandran plot based on a statistical analysis of static and dynamic characteristics of protein structures. Journal of Structural Biology, 215, 107939. https://doi.org/10.1016/j.jsb.2023.107939

Parmar, N., Singh, K. H., Sharma, D., Singh, L., Kumar, P., Nanjundan, J., & Thakur, A. K. (2017). Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech, 7, 1-35. https://doi.org/10.1007/s13205-017-0870-y

Rao, X., Huang, X., Zhou, Z., & Lin, X. (2013). An improvement of the 2ˆ (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, bioinformatics and biomathematics, 3(3), 71.

Roy, S., Maheshwari, N., Chauhan, R., Sen, N. K., & Sharma, A. (2011). Structure prediction and functional characterization of secondary metabolite proteins of Ocimum. Bioinformation, 6(8), 315. https://doi.org/10.6026/97320630006315

Rubinovich, L., Ruthstein, S., & Weiss, D. (2014). The Arabidopsis Cysteine-Rich GASA5 Is a Redox-Active Metalloprotein that Suppresses Gibberellin Responses. Molecular Plant, 7, 244−247. https://doi.org/10.1093/mp/sst141

Sah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science, 7, 571. https://doi.org/10.3389/fpls.2016.00571

Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS- MODEL: an automated protein homology -modelling server. Nucleic Acids Research, 31(13), 3381-3385.

Sarkar, S., Islam, A. A., Barma, N. C. D., & Ahmed, J. U. (2021). Tolerance mechanisms for breeding wheat against heat stress: A review. South African Journal of Botany, 138, 262-277. https://doi.org/10.1016/j.sajb.2021.01.003

Shewry, P. R., & Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and energy security, 4(3), 178-202. https://doi.org/10.1002/fes3.64

Sun, S., Wang, H., Yu, H., Zhong, C., Zhang, X., Peng, J., & Wang, X. (2013). GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. Journal of Experimental Botany, 64, 1637−1647. https://doi.org/10.1093/jxb/ert021

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., & Huerta-Cepas, J. (2019). STRING v11: protein‒protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607-D613.https://doi.org/10.1093/nar/gky1131

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7) 3022–3027. https://doi.org/10.1093/ molbev/msab120

Tripathi, A., Tripathi, D. K., Chauhan, D. K., Kumar, N., & Singh, G. S. (2016). Paradigms of climate change impacts on some major food sources of the world: a review on current knowledge and future prospect. Agriculture Ecosystems and Environment, 216, 356–373. https://doi.org/10.1016/j.agee.2015.09.034

Ullah, A., Nadeem, F., Nawaz, A., Siddique, K. H. M., & Farooq, M. (2022). Heat Stress effects on the reproductive physiology and yield of wheat. Journal of Agronomy and Crop Science, 208, 1–17. https://doi.org/10.1111/jac.12572

Villalobos-López, M. A., Arroyo-Becerra, A., Quintero-Jiménez, A., & Iturriaga, G. (2022). Biotechnological advances to improve abiotic stress tolerance in crops. International Journal of Molecular Sciences, 23(19), 12053. https://doi.org/10.3390/ijms231912053

Vishwakarma, H., & Sharma, J. (2018). Real time and in-silico based analysis of heat stress responsive transcription factor MBF1c from wheat. International Journal of Advanced Scientific Research and Management, 3(11), 2455–6378.

Vishwakarma, H., Junaid, A., Manjhi, J., Singh, G. P., Gaikwad, K., & Padaria, J. C. (2018). Heat stress transcripts, differential expression, and profiling of heat stress tolerant gene TaHsp90 in Indian wheat (Triticum aestivum L.) cv. C306. PLoS One, 13(6):e0198293. https://doi.org/10.1371%2Fjournal.pone.0198293

Wang, X., Yan, B., Shi, M., Zhou, W., Zekria, D., Wang, H., & Kai, G. (2016). Over expression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress. Protoplasma, 253(3), 637– 645.https://doi.org/10.1007/s00709-015-0867-5

Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics, 10(1), 57-63. https://doi.org/10.1038/nrg2484

Yang, M., Liu, C., Zhang, W., Wu, J., Zhong, Z., Yi, W., & He, Y. (2023). Genome-Wide Identification and Characterization of Gibberellic Acid-Stimulated Arabidopsis Gene Family in Pineapple (Ananascomosus). International Journal of Molecular Sciences, 24(23), 17063. https://doi.org/10.3390/ijms242317063

Yu, C. S., Chen, Y. C., Lu, C. H., & Hwang, J. K. (2006). Prediction of protein subcellular localization. Proteins: Structure, Function and Bioinformatics, 64, 643-651.https://doi.org/10.1002/prot.21018

Yu, C. S., Cheng, C. W., Su, W. C., Chang, K. C., Huang, S. W., Hwang, J. K., & Lu, C. H. (2014). CELLO2GO: a web server for protein subCELlularLOcalization prediction with functional gene ontology annotation. PloS one, 9(6), e99368. https://doi.org/10.1371/journal.pone.0099368

Zhang, L., Geng, X., Zhang, H., Zhou, C., Zhao, A., Wang, F., &Peng, H. (2017). Isolation and characterization of heat-responsive gene TaGASR1 from wheat (Triticum aestivum L.). Journal of Plant Biology, 60, 57–65. https://doi.org/10.1007/s12374-016-0484-7

Zhang, S., Yang, C., Peng, J., Sun, S., & Wang, X. (2009). GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Molecular Biology, 69, 745−759. https://doi.org/10.1007/s11103-009-9452-7

Zheng, B., Chenu, K., Dreccer, M. F., & Chapman, S. C. (2012). Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivum) varieties? Global Change Biology, 18, 2899–2914. https://doi.org/10.1111/j.1365-2486.2012.02724.x

Downloads

Published

2024-11-29

How to Cite

Kumar, S., Padaria, J. C., Tuli, H. S., Kumar, P., Chauhan, R., Kaur, D., Mandotra, S. K., & Aggarwal, D. (2024). Real-time and in silico-based characterization of the heat stress-responsive gene TaGASR1 from Indian bread wheat. Journal of Experimental Biology and Agricultural Sciences, 12(5), 730–741. https://doi.org/10.18006/2024.12(5).730.741

Issue

Section

RESEARCH ARTICLES

Categories