Real-time and in silico-based characterization of the heat stress-responsive gene TaGASR1 from Indian bread wheat
DOI:
https://doi.org/10.18006/2024.12(5).730.741Keywords:
High-temperature, Real-time PCR, in silico studies, Gibberellin-stimulated transcript, Genetic resourceAbstract
Wheat is a staple food for 80% of the global population, offering essential protein, calories, and nutrients. Earlier wheat heat interaction studies revealed that increasing temperatures can severely hinder plant growth and development, increasing overall productivity and sensitivity to extreme temperatures during seed emergence and anthesis. In this study, TaGASR1 (gibberellic acid-stimulated regulator 1), a potential candidate for heat stress resistance, was isolated, and its expression was found to be significantly greater in HD3086 wheat than in HD2894 wheat at both the seedling and anthesis stages after exposure to 42 °C heat stress (HS). Furthermore, in silico studies validated the molecular findings, revealing a CDS region of 297 nucleotides with 2 ORFs, with ~93% sequence similarity to the TaGASR1 gene from the TAM107 wheat variety. A 3D model of the target protein was designed using the C8C4P9.1 template, showing 95.92% sequence similarity and 100% query coverage with the gibberellin-stimulated transcript. Furthermore, studies of the conserved motifs and protein-protein interactions of the TaGASR1 protein have identified three major functional partners: cold acclimation proteins, ABA-inducible proteins, and protein phosphatase 2C, emphasizing its role in abiotic stress responses. Hence, the TaGASR1 gene is a promising candidate for further studies, as it positively responds under HS conditions. Therefore, future research should focus on its role across different species to cultivate heat-tolerant varieties, supporting sustainable development amid climate change. This would encourage breeders and researchers to use this gene to advance wheat crop development, considering current and anticipated environmental conditions.
References
Altenbach, S. B. (2012). New insights into the effects of high temperature, drought and postanthesis fertilizer on wheat grain development. Journal of Cereal Science, 56, 39–50. https://doi.org/10.1016/j.jcs.2011.12.012
Asseng, S., Foster, I., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17, 997–1012. https://doi.org/10.1111/j.1365-2486.2010.02262.x
Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., & Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic acids research, 37, W202-W208.
Bailey, T. L., Johnson, J., Grant, C. E., & Noble, W. S. (2015). The MEME suite. Nucleic acids research, 43(W1), W39-W49. https://doi.org/10.1093/nar/gkv416
Bhaskara, G. B., Nguyen, T. T., & Verslues, P. E. (2012). Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiology, 160, 379–395. https://doi.org/10.1104/pp.112.202408
Chapman, S. C., Chakraborty, S., Dreccer, M. F., & Howden, S. C. (2012). Plant adaptation to climate change-opportunities and priorities in breeding. Crop and Pasture Science, 63, 251–268. http://dx.doi.org/10.1071/CP11303
Cheng, X., Wang, S., Xu, D., Liu, X., Li, X., et al. (2019). Identification and Analysis of the GASR Gene Family in Common Wheat (Triticum aestivum L.) and Characterization of TaGASR34, a Gene Associated With Seed Dormancy and Germination. Frontiers in Genetics, 10, 980. https://doi.org/10.3389/fgene.2019.00980
Clavijo, B. J., Venturini, L., Schudoma, C., Accinelli, G. G., Kaithakottil, G., et al. (2017). An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 27(5), 885–896. https://doi.org/10.1101%2Fgr.217117.116
Duan, S., Liu, B., Zhang, Y., Li, G., & Guo, X. (2019). Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L. BMC in Genomics, 20, 257. https://doi.org/10.1186/s12864-019-5617-1
Essemine, J., Ammar, S., & Bouzid, S. (2010). Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussions and mechanisms of defence. Journal of Biological Sciences, 10, 565–572. http://dx.doi.org/10.3923/jbs.2010.565.572
Farhad, M., Kumar, U., Tomar, V., Bhati, P. K., Krishnan J, N., Barek, V., Brestic, M., & Hossain, A. (2023). Heat stress in wheat: a global challenge to feed billions in the current era of the changing climate. Frontiers in Sustainable Food Systems, 7, 1203721. https://doi.org/10.3389/fsufs.2023.1203721
Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011). Heat stress in wheat during reproductive and grain filling phases. Critical Reviews in Plant Science, 30, 491–507. https://doi.org/10.1080/07352689.2011.615687
Furukawa, T., Sakaguchi, N., & Shimada, H. (2006). Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles. Genes and Genetic System, 81, 171−180. https://doi.org/10.1266/ggs.81.171
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In: J.M Walker (Eds). The Proteomics Protocols Handbook (112, pp. 571–607). Springer Protocols Handbooks, Humana Press, New Jersey, USA. https://doi.org/10.1385/1-59259-890-0:571
Gawdiya, S., Kumar, D., Shivay, Y. S., Radheshyam, Nayak, S., Ahmed, B., &Mattar, M. A. (2023). Nitrogen-Driven Genotypic Diversity of Wheat (Triticum aestivum L.) Genotypes. Agronomy, 13(10), 2447. https://doi.org/10.3390/agronomy13102447
Grosse-Heilmann, M., Cristiano, E., Deidda, R., & Viola, F. (2024). Durum wheat productivity today and tomorrow: A review of influencing factors and climate change effects. Resources, Environment and Sustainability, 17, 100170. https://doi.org/10.1016/j.resenv.2024.100170
Guo, M., Lu, J. P., Zhai, Y. F., Chai, W. G., Gong, Z. H., & Lu, M. H. (2015). Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterization of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biology, 15, 1-20. https://doi.org/10.1186/s12870-015-0512-7
Hatfield, J. L., & John, H. P. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. https://doi.org/10.1016/j.wace.2015.08.001
Jamil, M., Ali, A., Gul, A., Ghafoor, A., Napar, A.A., Ibrahim, A. M., Naveed, N. H., Yasin, N. A., &Mujeeb-Kazi, A. (2019). Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. BMC in Plant Biology, 19, 1–18. https://doi.org/10.1186/s12870-019-1754-6
Jiang, C., Bi, Y., Mo, J., Zhang, R., Qu, M., Feng, S., & Essemine, J. (2020). Proteome and transcriptome reveal the involvement of heat shock proteins and antioxidant system in thermotolerance of Clematis florida. Scientific reports, 10(1), 8883. https://doi.org/10.1038/s41598-020-65699-2
Khaeim, H., Kende, Z., Balla, I., Gyuricza, C., Eser, A., &Tarnawa, Á. (2022). The effect of temperature and water stresses on seed germination and seedling growth of wheat (Triticum aestivum L.). Sustainability, 14(7), 3887. https://doi.org/10.3390/su14073887
Khalid, A., Hameed, A., &Tahir, M. F. (2023). Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Frontiers in Nutrition, 10, 1053196. https://doi.org/10.3389/fnut.2023.1053196
Kosova, K., Vitamvas, P., Prasil, I. T., & Renaut, J. (2011). Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. Journal of Proteomics, 74, 1301–1322. https://doi.org/10.1016/j.jprot.2011.02.006
Kumar, S., Vishwakarma, H., Loitongbam, A., &Aggarwal, D. (2023). Multiprotein- bridging factor 1c from Triticum aestivum L. confers tolerance to high-temperature stress in transgenic Nicotiana tabacum. Plant Cell Tissue and Organ Culture, 154, 443–456. https://doi.org/10.1007/s11240-023-02548-w
Liu, H., Zeng, B., Zhao, J., Yan, S., Wan, J., & Cao, Z. (2023). Genetic Research Progress: Heat tolerance in Rice. International Journal of Molecular Science, 24(8), 7140. https://doi.org/10.3390/ijms24087140
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408. https://doi.org/10.1006/ meth.2001.1262
Mao, Z. C., Zheng, J. Y., Wang, Y. S., Chen, G. H., Yang, Y. H., Feng, D. X., & Xie, B. Y. (2011). The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper. Phytoparasitica, 39, 151−164. http://dx.doi.org/10.1007/s12600-011-0149-5
Masarmi, A. G., Solouki, M., Fakheri, B., Kalaji, H. M., Mahgdingad, N., Golkari, S., &Yousef, A. F. (2023). Comparing the salinity tolerance of twenty different wheat genotypes on the basis of their physiological and biochemical parameters under NaCl stress. Plos One, 18(3), e0282606. https://doi.org/10.1371/journal.pone.0282606
Matsunaga, S., Yamasaki, Y., Toda, Y., Mega, R., Akashi, K., & Hjijoms, T. (2021). Stage-specific characterization of physiological response to heat stress in the wheat cultivar Norin 61. International Journal of Molecular Science, 22, 6942. https://doi.org/10.3390/ijms22136942
Moyano-Canete, E., Bellido, M. L., Garcia-Caparros, N., Medina-Puche, L., Amil-Ruiz, F., Gonzalez-Reyes, J. A., Caballero, J. L., Munoz-Blanco, J., & Blanco-Portales, R. (2013). FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle. Plant and Cell Physiology, 54, 218−236. https://doi.org/10.1093/pcp/pcs167
Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., Hodson, D., Dixon, J. M., Ortiz-Monasterio, J. I., & Reynolds, M. (2008). Climate change: can wheat beat the heat? Agriculture, Ecosystems and Environment, 126, 46– 58. https://doi.org/10.1016/j.agee.2008.01.019
Padaria, J. C., Bhatt, D., Biswas, K., Singh, G., & Raipuria, R. (2013). In-silico prediction of an uncharacterized protein generated from heat stress responsive SSH library in wheat (Triticum aestivum L.). Plant Omics Journal, 6, 150–156.
Padaria, J. C., Vishwakarma, H., Biswas, K., Jasrotia, R. S., & Singh, G. P. (2014). Molecular cloning and in-silico characterization of high temperature stress responsive pAPX gene isolated from heat tolerant Indian wheat cv. Raj 3765. BMC in Research Notes, 7, 713. https://doi.org/10.1186/1756-0500-7-713
Panzade, K. P., Vishwakarma, H., Awasthi, O. P., & Padaria, J. C. (2021). Molecular cloning and in silico analysis of heat stress responsive gene ClpB1 from Ziziphus nummularia genotypes. Indian Journal of Experimental Biology, 59, 316–327. http://nopr.niscpr.res.in/handle/123456789/57223
Park, S. W., Lee, B. H., Song, S. H., & Kim, M. K. (2023). Revisiting the Ramachandran plot based on a statistical analysis of static and dynamic characteristics of protein structures. Journal of Structural Biology, 215, 107939. https://doi.org/10.1016/j.jsb.2023.107939
Parmar, N., Singh, K. H., Sharma, D., Singh, L., Kumar, P., Nanjundan, J., & Thakur, A. K. (2017). Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech, 7, 1-35. https://doi.org/10.1007/s13205-017-0870-y
Rao, X., Huang, X., Zhou, Z., & Lin, X. (2013). An improvement of the 2ˆ (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, bioinformatics and biomathematics, 3(3), 71.
Roy, S., Maheshwari, N., Chauhan, R., Sen, N. K., & Sharma, A. (2011). Structure prediction and functional characterization of secondary metabolite proteins of Ocimum. Bioinformation, 6(8), 315. https://doi.org/10.6026/97320630006315
Rubinovich, L., Ruthstein, S., & Weiss, D. (2014). The Arabidopsis Cysteine-Rich GASA5 Is a Redox-Active Metalloprotein that Suppresses Gibberellin Responses. Molecular Plant, 7, 244−247. https://doi.org/10.1093/mp/sst141
Sah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science, 7, 571. https://doi.org/10.3389/fpls.2016.00571
Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS- MODEL: an automated protein homology -modelling server. Nucleic Acids Research, 31(13), 3381-3385.
Sarkar, S., Islam, A. A., Barma, N. C. D., & Ahmed, J. U. (2021). Tolerance mechanisms for breeding wheat against heat stress: A review. South African Journal of Botany, 138, 262-277. https://doi.org/10.1016/j.sajb.2021.01.003
Shewry, P. R., & Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and energy security, 4(3), 178-202. https://doi.org/10.1002/fes3.64
Sun, S., Wang, H., Yu, H., Zhong, C., Zhang, X., Peng, J., & Wang, X. (2013). GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. Journal of Experimental Botany, 64, 1637−1647. https://doi.org/10.1093/jxb/ert021
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., & Huerta-Cepas, J. (2019). STRING v11: protein‒protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607-D613.https://doi.org/10.1093/nar/gky1131
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7) 3022–3027. https://doi.org/10.1093/ molbev/msab120
Tripathi, A., Tripathi, D. K., Chauhan, D. K., Kumar, N., & Singh, G. S. (2016). Paradigms of climate change impacts on some major food sources of the world: a review on current knowledge and future prospect. Agriculture Ecosystems and Environment, 216, 356–373. https://doi.org/10.1016/j.agee.2015.09.034
Ullah, A., Nadeem, F., Nawaz, A., Siddique, K. H. M., & Farooq, M. (2022). Heat Stress effects on the reproductive physiology and yield of wheat. Journal of Agronomy and Crop Science, 208, 1–17. https://doi.org/10.1111/jac.12572
Villalobos-López, M. A., Arroyo-Becerra, A., Quintero-Jiménez, A., & Iturriaga, G. (2022). Biotechnological advances to improve abiotic stress tolerance in crops. International Journal of Molecular Sciences, 23(19), 12053. https://doi.org/10.3390/ijms231912053
Vishwakarma, H., & Sharma, J. (2018). Real time and in-silico based analysis of heat stress responsive transcription factor MBF1c from wheat. International Journal of Advanced Scientific Research and Management, 3(11), 2455–6378.
Vishwakarma, H., Junaid, A., Manjhi, J., Singh, G. P., Gaikwad, K., & Padaria, J. C. (2018). Heat stress transcripts, differential expression, and profiling of heat stress tolerant gene TaHsp90 in Indian wheat (Triticum aestivum L.) cv. C306. PLoS One, 13(6):e0198293. https://doi.org/10.1371%2Fjournal.pone.0198293
Wang, X., Yan, B., Shi, M., Zhou, W., Zekria, D., Wang, H., & Kai, G. (2016). Over expression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress. Protoplasma, 253(3), 637– 645.https://doi.org/10.1007/s00709-015-0867-5
Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics, 10(1), 57-63. https://doi.org/10.1038/nrg2484
Yang, M., Liu, C., Zhang, W., Wu, J., Zhong, Z., Yi, W., & He, Y. (2023). Genome-Wide Identification and Characterization of Gibberellic Acid-Stimulated Arabidopsis Gene Family in Pineapple (Ananascomosus). International Journal of Molecular Sciences, 24(23), 17063. https://doi.org/10.3390/ijms242317063
Yu, C. S., Chen, Y. C., Lu, C. H., & Hwang, J. K. (2006). Prediction of protein subcellular localization. Proteins: Structure, Function and Bioinformatics, 64, 643-651.https://doi.org/10.1002/prot.21018
Yu, C. S., Cheng, C. W., Su, W. C., Chang, K. C., Huang, S. W., Hwang, J. K., & Lu, C. H. (2014). CELLO2GO: a web server for protein subCELlularLOcalization prediction with functional gene ontology annotation. PloS one, 9(6), e99368. https://doi.org/10.1371/journal.pone.0099368
Zhang, L., Geng, X., Zhang, H., Zhou, C., Zhao, A., Wang, F., &Peng, H. (2017). Isolation and characterization of heat-responsive gene TaGASR1 from wheat (Triticum aestivum L.). Journal of Plant Biology, 60, 57–65. https://doi.org/10.1007/s12374-016-0484-7
Zhang, S., Yang, C., Peng, J., Sun, S., & Wang, X. (2009). GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Molecular Biology, 69, 745−759. https://doi.org/10.1007/s11103-009-9452-7
Zheng, B., Chenu, K., Dreccer, M. F., & Chapman, S. C. (2012). Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivum) varieties? Global Change Biology, 18, 2899–2914. https://doi.org/10.1111/j.1365-2486.2012.02724.x
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.