Effect of salinity stress on antioxidant activity and secondary metabolites of Piper betle
DOI:
https://doi.org/10.18006/2024.12(5).705.729Keywords:
Betel vine, Salinity stress, Antioxidant activity, GC-MS, Secondary metabolitesAbstract
Salt stress is the most devastating abiotic stress that drastically limits the productivity and quality of crops. This study assessed the impact of NaCl concentrations (100, 200, and 400 mM) on betel vine's antioxidant activities and secondary metabolites (Piper betle L.). Results of the study suggest that the activity of antioxidative enzymes was enhanced at 100 and 200 mM NaCl levels but reduced at 400 mM NaCl. Further, the GC-MS analysis revealed the increased production of secondary metabolites such as alkane, ester, fatty acid, phenolic, and terpene compounds during salt stress. These findings would be helpful for further investigations that could lead to enhanced production of secondary metabolites in betel vine for industrial and medicinal benefits.
References
Adden, A.K., Haines Acosta-Serrano, Á.L.R., & Prieto-Godino, L.L. (2023). Tsetse flies (Glossina morsitansmorsitans) choose birthing sites guided by substrate cues with no evidence for a role of pheromones. Proceedings of the Royal Society B:Biological Sciences, 290, 1-8. https://doi.org/10.1098/rspb.2023.0030 DOI: https://doi.org/10.1098/rspb.2023.0030
Ait Elallem, K., Ben Bakrim, W., Yasri, A., & Boularbah, A. (2024). Growth, biochemical traits, antioxidant enzymes, and essential oils of four aromatic and medicinal plants cultivated in phosphate-mine residues. Plants, 13(18), 2656. DOI: https://doi.org/10.3390/plants13182656
Akbari, B., Baghaei Yazdi, N., Bahmaie, M., & Mahdavi Abhari, F. (2022). The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors, 48(3), 611-633. https://doi.org/10.1002/biof.1831 DOI: https://doi.org/10.1002/biof.1831
Al Ahadeb, J.I. (2022). Impact of Cinnamomum verum against different Escherichia coli strains isolated from drinking water sources of rural areas in Riyadh. Saudi Arabia Journal of King Saudi Unversity Science, 34(2), 1-5. https://doi.org/10.1016/ j.jksus.2021.101742 DOI: https://doi.org/10.1016/j.jksus.2021.101742
Alam, M.B., Park, N. H., Song, B. R., & Lee, S.H. (2023). Antioxidant potential-rich betel leaves (Piper betle L.) exert depigmenting action by triggering autophagy and downregulating MITF/Tyrosinase In Vitro and In Vivo. Antioxidants, 12(2), 374. https://doi.org/10.3390/antiox12020374 DOI: https://doi.org/10.3390/antiox12020374
Amor, N. B., Jiménez, A., Megdiche, W., Lundqvist, M., Sevilla, F., & Abdelly, C. (2006). Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiologia Plantarum, 126(3), 446-457. DOI: https://doi.org/10.1111/j.1399-3054.2006.00620.x
Annegowda, H.V., Tan, P.Y., Mordi, M.N., Ramanathan, S., Hamdan, M.R., Sulaiman, M.H., & Mansor, S.M. (2013). TLC–bioautography-guided isolation, HPTLC and GC–MS-assisted analysis of bioactives of Piper betle leaf extract obtained from various extraction techniques: In vitro evaluation of phenolic content, antioxidant and antimicrobial activities. Food Analytical Methods, 6, 715-726. http://dx.doi.org/10.1007%2Fs12161-012-9470-y DOI: https://doi.org/10.1007/s12161-012-9470-y
Ayswarya, S., Radhakrishnan, S., Manigundan, K., Gopikrishnan, V., & Soytong, K. (2022). Antioxidant activity of 2, 4-di-tert-butylphenol isolated from plant growth promoting endophytic Streptomyces KCA-1. International Journal of Agriculture Technology, 18 (6), 2343.
Barbieri, G., Vallone, S., Orsini, F., Paradiso, R., De Pascale, S., Negre-Zakharov, F., & Maggio, A. (2012). Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.). Journal of Plant Physiology 169 (17), 1737-1746. https://doi.org/10.1016/ j.jplph.2012.07.001 DOI: https://doi.org/10.1016/j.jplph.2012.07.001
Bistgani, Z.E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., & Morshedloo, M.R. (2019). Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 135, 311-320.https://doi.org/10.1016/j.indcrop.2019.04.055 DOI: https://doi.org/10.1016/j.indcrop.2019.04.055
Biswas, P., Anand, U., Saha, S.C., Kant, N., Mishra, T., Masih, H., & Dey, A. (2022). Betel vine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. Journal of Cell and Molecular Medicine, 26(11), 3083-3119. https://doi.org/10.1111%2Fjcmm.17323 DOI: https://doi.org/10.1111/jcmm.17323
Burkhardt, J. (2010). Hygroscopic particles on leaves: nutrients or desiccants? Ecological Monographs, 80(3), 369-399.https://doi.org/10.1890/09-1988.1 DOI: https://doi.org/10.1890/09-1988.1
Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Razis, A.F.A., Modu, B., & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Frontier in Chemistry, 11, 1158198. https://doi.org/10.3389/fchem.2023.1158198 DOI: https://doi.org/10.3389/fchem.2023.1158198
Chaudhry, S., & Sidhu, G.P.S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41(1), 1-31. https://doi.org/10.1007/s00299-021-02759-5 DOI: https://doi.org/10.1007/s00299-021-02759-5
Daudi, A., & O'brien, J. A. (2012). Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-protocol, 2(18), e263-e263. DOI: https://doi.org/10.21769/BioProtoc.263
Dubey, D., Patnaik, R., Ghosh, G., & Padhy, R.N. (2014). In vitro antibacterial activity, gas chromatography–mass spectrometry analysis of Woodfordia fruticosa Kurz. leaf extract and host toxicity testing with in vitro cultured lymphocytes from human umbilical cord blood. Osong Public Health and Research Perspectives, 5(5), 298-312. https://doi.org/10.1016/j.phrp.2014.08.001 DOI: https://doi.org/10.1016/j.phrp.2014.08.001
Ebadollahi, A., Sendi, J.J., Aliakbar, A. J., & Razmjou, J.(2015). Acaricidal activities of essential oils from Satureja hortensis (L.) and Teucrium polium (L.) against the two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Egyptian Journal of Biological Pest Control, 25(1),171-176.
Esfandiari, E., Shekari, F., Shekari, F., & Esfandiari, M. (2007). The effect of salt stress on antioxidant enzymes'activity and lipid peroxidation on the wheat seedling. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 35(1), 48.
Eyer, P.A., Salin, J., Helms, A.M., & Vargo, E.L. (2021). Distinct chemical blends produced by different reproductive castes in the subterranean termite Reticulitermes flavipes. Scientific Reports, 11(1), 4471.https://doi.org/10.1038/s41598-021-83976-6 DOI: https://doi.org/10.1038/s41598-021-83976-6
Farhat, F., Arfan, M., Wang, X., Tariq, A., Kamran, M., Tabassum, H.N., & Elansary, H.O. (2022). The impact of bio-stimulants on Cd-stressed wheat (Triticum aestivum L.): Insights into growth, chlorophyll fluorescence, Cd accumulation, and osmolyte regulation. Frontiers in Plant Science, 13, 850567. https://doi.org/10.3389/fpls.2022.850567 DOI: https://doi.org/10.3389/fpls.2022.904893
Ganesan, T., Subban, M., Christopher Leslee, D. B., Kuppannan, S. B., & Seedevi, P. (2024). Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Conversion and Biorefinery, 14(13), 14547-14558. DOI: https://doi.org/10.1007/s13399-022-03576-w
Gölge, B.H., & Vardar, F. (2020). Temporal analysis of Al-induced programmed cell death in barley (Hordeum vulgare l.) roots. Caryologia, 73(1), 45-55. https://doi.org/10.13128/caryologia-185
Hameed, A., Ahmed, M. Z., Hussain, T., Aziz, I., Ahmad, N., Gul, B., & Nielsen, B. L. (2021). Effects of salinity stress on chloroplast structure and function. Cells, 10(8), 2023. DOI: https://doi.org/10.3390/cells10082023
Hasanuzzaman Abbruzzese, G., Beritognolo, I., Muleo, R., Piazzai, M., Sabatti, M., Mugnozza, G.S., & Kuzminsky, E. (2009). Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environmental and Experimental Botany, 66(3), 381-388.http://dx.doi.org/10.1016/j.envexpbot.2009.04.008 DOI: https://doi.org/10.1016/j.envexpbot.2009.04.008
Hasanuzzaman, M.D., Davies, N.W., Shabala, L., Zhou, M., Brodribb, T.J., & Shabala, S.(2017). Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley. BMC Plant Biology, 17, 1-12. http://dx.doi.org/10.1186/s12870-017-1054-y DOI: https://doi.org/10.1186/s12870-017-1054-y
Hatami, M., & Ghorbanpour, M. (2024). Metal and metal oxide nanoparticles-induced reactive oxygen species: Phytotoxicity and detoxification mechanisms in plant cell. Plant Physiology and Biochemistry, 213, 108847. https://doi.org/10.1016/ j.plaphy.2024.108847 DOI: https://doi.org/10.1016/j.plaphy.2024.108847
Islam, M. Z., Park, B. J., & Lee, Y. T. (2019). Effect of salinity stress on bioactive compounds and antioxidant activity of wheat microgreen extract under organic cultivation conditions. International journal of biological macromolecules, 140, 631-636. https://doi.org/10.1016/j.ijbiomac.2019.08.090 DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.090
Kannan, P. R., Deepa, S., Kanth, S. V., & Rengasamy, R. (2013). Growth, osmolyte concentration and antioxidant enzymes in the leaves of Sesuvium portulacastrum L. under salinity stress. Applied biochemistry and biotechnology, 171, 1925-1932. https://doi.org/10.1007/s12010-013-0475-9 DOI: https://doi.org/10.1007/s12010-013-0475-9
Kerschbaum, H.H., Tasa, B.A., Schürz, M., Oberascher, K., & Bresgen, N. (2021). Trypan blue-adapting a dye used for labelling dead cells to visualize pinocytosis in viable cells. Cell Physiology and Biochemistry, 55, 171-184. https://doi.org/10.33594/000000380 DOI: https://doi.org/10.33594/000000380
Khan, I.H., & Javaid, A. (2020). Comparative antifungal potential of stem extracts of four quinoa varieties against Macrophomina phaseolina. International Journal of Agriculture and Biology, 24(3), 441-446. http://dx.doi.org/10.17957/IJAB/15.1457
Kudaibergen, A.A., Nurlybekova, A.K., Kemelbek, M., Feng, Y., & Zhenis, J.(2020). GC-MS analysis of liposoluble components from Spiraea hypericifolia L. bulletin of the Eurasian National University named after L.N.GUMILYOV, series. Chemistry Geography Ecology, 133 (4), 44. https://doi.org/10.3390/plants11101384 DOI: https://doi.org/10.32523/2616-6771-2020-133-4-44-53
Kumar, A., Kumari, P.S., & Somasundaram, T. (2014). Gas chromatography-mass spectrum (GC-MS) analysis of bioactive components of the methanol extract of halophyte, Sesuviumportulacastrum L. International Journal of Advances in Pharmacy Biology and Chemistry, 3(3), 766-772.
Kumar, R., Sharma, S., Kumar, S., Kumar, D., Lagarkha, R., Kumar, S., & Pandey, M. (2024). In vitro investigation of phytoconstituents, GC-MS, TLC, antioxidant activity, total phenolic & flavonoid contents from Aegle marmelos L. (Bael) leaves extract. European Journal of Medicinal Plants, 35(6), 187-199. DOI: https://doi.org/10.9734/ejmp/2024/v35i61218
Kumari, P., Mahapatro, G.K., Banerjee, N., & Sarin, N.B.(2015). Ectopic expression of GroEL from Xenorhabdus nematophila in tomato enhances resistance against Helicoverpa armigera and salt and thermal stress. Translational Research, 24, 859-873. https://doi.org/10.1007/s11248-015-9881-9 DOI: https://doi.org/10.1007/s11248-015-9881-9
Kusvuran, S., Cengil, B., & Mutlu, F. (2024). Effect of nano-silicon application on salt tolerance of pepper (Capsicum annuum L.). Proceedings of the Bulgarian Academy of Sciences,77(3), 467-474. DOI: https://doi.org/10.7546/CRABS.2024.03.18
Lala, S. (2021). Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: a review. IET Nanobiotechnology, 15, 28-57. https://doi.org/10.1049/nbt2.12005 DOI: https://doi.org/10.1049/nbt2.12005
Li, X., Zhang, W., Niu, D., & Liu, X. (2024). Effects of abiotic stress on chlorophyll metabolism. Plant Science, 342, 112030.https://doi.org/10.1016/j.plantsci.2024.112030 DOI: https://doi.org/10.1016/j.plantsci.2024.112030
Lin, K. H., & Pu, S. F. (2010). Tissue-and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. Biologia plantarum, 54, 664-670. https://doi: 10.1007/s10535-010-0118-8 DOI: https://doi.org/10.1007/s10535-010-0118-8
Madhumita, M., Guha, P., & Nag, A. (2019). Optimization of the exhaustive hydrodistillation method in the recovery of essential oil from fresh and cured betel leaves (Piper betle L.) using the Box–Behnken design. Journal of Food Processing and Preservation, 43(11),14196. http://dx.doi.org/10.1111/jfpp.14196 DOI: https://doi.org/10.1111/jfpp.14196
Madhumita, M., Guha, P., & Nag, A. (2020). Bio‐actives of betel leaf (Piper betle L.): A comprehensive review on extraction, isolation, characterization, and biological activity. Phytotherapy Research, 34(10), 2609-2627. https://doi.org/10.1002/ptr.6715 DOI: https://doi.org/10.1002/ptr.6715
Mahalakshmi, R., Eganathan, P., & Ajay, P. (2013). Changes in secondary metabolite production in Jatropha curcas calluses treated with NaCl. Analytical Chemistry Letters, 3(5-6), 359-369. http://dx.doi.org/10.1080/22297928.2013.873225 DOI: https://doi.org/10.1080/22297928.2013.873225
Mane, A. V., Karadge, B. A., & Samant, J. S. (2010). Salinity induced changes in catalase, peroxidase and acid phosphatase in four grass species. Nature, Environment and Pollution Technology, 9(4), 781-786.
Mesa, T., Polo, J., Arabia, A., Caselles, V., & Munné-Bosch, S. (2022). Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality. Journal of Plant Physiology, 268, 153581. http://dx.doi.org/10.1016/ j.jplph.2021.153581 DOI: https://doi.org/10.1016/j.jplph.2021.153581
Mohapatra, B., & Phale, P.S. (2021). Microbial degradation of naphthalene and substituted naphthalenes: metabolic diversity and genomic insight for bioremediation. Frontiers in Bioengineering and Biotechnology, 9, 602445. https://doi.org/10.3389/fbioe.2021.602445 DOI: https://doi.org/10.3389/fbioe.2021.602445
Morris, B.D., Smyth, R.R., Foster, S.P., Hoffmann, M.P., Roelofs, W.L., Franke, S., & Francke, W. (2005). Vittatalactone, a β-lactone from the striped cucumber beetle, Acalymma vittatum. Journal of Natural Products, 68(1), 26-30. https://doi.org/10.1021/np049751v DOI: https://doi.org/10.1021/np049751v
Mostofa, M.G., Fujita, M., & Tran, L.S.P. (2015). Nitric oxide mediates hydrogen peroxide-and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regulation, 77, 265-277. http://dx.doi.org/10.1007/s10725-015-0061-y DOI: https://doi.org/10.1007/s10725-015-0061-y
Nazarudin, M.F., Yasin, I.S.M., Mazli, N.A.I.N., Saadi, A.R., Azizee, M.H.S., Nooraini, M.A., & Fakhrulddin, I.M. (2022). Preliminary screening of antioxidant and cytotoxic potential of green seaweed, Halimeda opuntia (Linnaeus) Lamouroux. Saudi Journal of Biological Sciences, 29(4), 2698-2705. https://doi.org/10.1016/j.sjbs.2021.12.066 DOI: https://doi.org/10.1016/j.sjbs.2021.12.066
Noreen, S., Ashraf, M., Hussain, M., & Jamil, A. (2009). Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pakistan Journal of Botany, 41(1), 473-479.
Paul, V., Sharma, L., Pandey, R., & Meena, R. C. (2017). Measurements of stomatal density and stomatal index on leaf/plant surfaces. Manual of ICAR Sponsored Training Programme for Technical Staff of ICAR Institutes on―Physiological Techniques to Analyze the Impact of Climate Change on Crop Plants, 27.
Rashad, Y.M., Abdalla, S.A., & Sleem, M.M. (2022). Endophytic Bacillus subtilis SR22 triggers defense responses in tomato against rhizoctonia root rot. Plants, 11(15), 2051. https://doi.org/10.3390/plants11152051 DOI: https://doi.org/10.3390/plants11152051
Rathinapriya, P., Pandian, S., Rakkammal, K., Balasangeetha, M., Alexpandi, R., Satish, L., & Ramesh, M. (2020). The protective effects of polyamines on salinity stress tolerance in foxtail millet (Setaria italica L.), an important C4 model crop. Physiology and Molecular Biology of Plants, 26, 1815-1829. https://doi.org/10.1007%2Fs12298-020-00869-0 DOI: https://doi.org/10.1007/s12298-020-00869-0
Sahu, A. K., Kumari, P., & Mittra, B. (2024a). Fusarium induced anatomical and biochemical alterations in wild type and dpa-treated wheat seedlings. Journal of Pure & Applied Microbiology, 18(1), 229-242. https://doi.org/10.22207/JPAM.18.1.06 DOI: https://doi.org/10.22207/JPAM.18.1.06
Sahu, A. K., Kumari, P., & Mittra, B. (2024b). Immunocompromisation of wheat host by L-BSO and 2, 4-DPA induces susceptibility to the fungal pathogen Fusarium oxysporum. Stress Biology, 4(1), 1-18.https://doi.org/10.1007/s44154-023-00137-7 DOI: https://doi.org/10.1007/s44154-023-00137-7
Sen, S., & Rengaian, G. (2021). A review on the ecology, evolution and conservation of Piper (Piperaceae) in India: future directions and opportunities. The Botanical Review, 88(3),333-358. http://dx.doi.org/10.1007/s12229-021-09269-9 DOI: https://doi.org/10.1007/s12229-021-09269-9
Sharma, C., Al Kaabi, J. M., Nurulain, S. M., Goyal, S. N., Kamal, M. A., & Ojha, S. (2016). Polypharmacological Properties and Therapeutic Potential of β-Caryophyllene: A Dietary Phytocannabinoid of Pharmaceutical Promise. Current pharmaceutical design, 22(21), 3237–3264. https://doi.org/10.2174/1381612822666160311115226 DOI: https://doi.org/10.2174/1381612822666160311115226
Shumaila Ullah, S., & Nafees, M.(2023). Biochar application to soil and seed pre-soaking on growth, yield and physiological response of Solanum melongena L. under induced abiotic stresses. Journal of Plant Growth and Regulation, 42(11), 1-24. http://dx.doi.org/10.1007/s00344-023-10990-5 DOI: https://doi.org/10.1007/s00344-023-10990-5
Sosa, A.A., Bagi, S.H., & Hameed,I.H. (2016). Analysis of bioactive chemical compounds of Euphorbia lathyrus using gas chromatography-mass spectrometry and fourier-transform infrared spectroscopy. Journal of Pharmacognosy and Phytotherapy, 8(5),109-126. http://dx.doi.org/10.5897/JPP2015.0371 DOI: https://doi.org/10.5897/JPP2015.0371
Sulistyorini, L. (2020). Induction and identification of bioactive compounds from callus extract of Piper betle L. Var. nigra. Malaysian Journal of Analytical Sciences, 24(6),1024-1034.
Tahjib-Ul-Arif, M., Sayed, M.A., Islam, M.M., Siddiqui, M.N., Begum, S.N., & Hossain, M.A. (2018). Screening of rice landraces (Oryza sativa L.) for seedling stage salinity tolerance using morpho-physiological and molecular markers. Acta Physiologia Plantarum ,40(4), 70. https://doi.org/10.1007/s12298-014-0250-6 DOI: https://doi.org/10.1007/s11738-018-2645-4
Techer, D., Milla, S., Fontaine, P., Viot, S., & Thomas, M. (2015). Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio. Environmental Science and Pollution Research, 22, 5020-5029. DOI: https://doi.org/10.1007/s11356-015-4098-2
Torkornoo, D. C., Larbie, S., Agbenyegah, J. N. N., Dowuona, R., Appiah-Oppong et al. (2019). Evaluation of the anti-proliferative effect, antioxidant and phytochemical constituents of Ficus pumila Linn. International Journal of Pharmaceutical Sciences and Research, 10(5), 2605-2618.http://dx.doi.org/10.13040/ IJPSR.0975-8232.10(5).2605-18
Yang, J., Zhang, L., Jiang, L., Zhan, Y.G., & Fan, G.Z. (2021). Quercetin alleviates seed germination and growth inhibition in Apocynum venetum and Apocynum pictum under mannitol-induced osmotic stress. Plant Physiology and Biochemistry, 159, 268-276. https://doi.org/10.1016/j.plaphy.2020.12.025 DOI: https://doi.org/10.1016/j.plaphy.2020.12.025
Yogeswari, S., Ramalakshmi, S., Neelavathy, R., & Muthumary, J.Y. (2012). Identification and comparative studies of different
volatile fractions from Monochaetia kansensis by GCMS. Global Journal of Pharmacology, 6(2),65-71.
Zhang, Y., Zhou, X., Dong, Y., Zhang, F., He, Q., Chen, J., & Zhao, T. (2021). Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phytohormone signal pathways. Industrial Crops and Products, 169, 113671. DOI: https://doi.org/10.1016/j.indcrop.2021.113671
Zhao, F., Wang, P., Lucardi, R.D., Su, Z., & Li, S.(2020). Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs. Toxins, 12(1), 35. https://doi.org/10.3390/toxins12010035 DOI: https://doi.org/10.3390/toxins12010035
Zhou, H., Shi, H., Yang, Y., Feng, X., Chen, X., Xiao, F., & Guo, Y. (2024). Insights into plant salt stress signalling and tolerance. Journal of Genetics and Genomics, 51(1), 16-34. DOI: https://doi.org/10.1016/j.jgg.2023.08.007
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.