Fruits of Prosopis chilensis and Tetrapleura tetraptera as an alternative against multi-resistant bacteria in lower respiratory tract infections
DOI:
https://doi.org/10.18006/2024.12(5).668.675Keywords:
Prosopis chilensis, Tetrapleura tetraptera, Pseudomonas aeruginosa, Fruits, Antioxidant, AntibacterialAbstract
Pseudomonas aeruginosa is a bacterium whose global spread poses a significant threat to human health due to its multidrug resistance (MDR). As a result, it is crucial to explore alternative treatments, particularly plant-based drugs, that are considered safe. The fruits of two plants, Tetrapleura tetraptera, and Prosopis chilensis, have been traditionally used to treat infectious diseases. These fruits are well-known for their nutritional and functional properties and their various bioactive compounds. Given these characteristics, the fruits can be effectively used against bacterial species like P. aeruginosa, which are resistant to conventional antibiotics. The present study aimed to evaluate the effects of fruit extracts on the multi-resistant bacterium P. aeruginosa PAO1. The research utilized methanolic, hydro-methanolic extracts, and aqueous decoctions of the selected fruits for phytochemical analysis and to assess antioxidant and antibacterial activities, along with acute toxicity. The study employed the 2,2-Diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity and ferric reducing antioxidant power (FRAP) methods to examine antioxidant properties. The antibacterial activity was assessed through minimum inhibitory concentration (MIC), minimum biofilm concentration (BMC), and biofilm formation analysis. The results indicated that the methanolic extracts of P. chilensis and the aqueous decoction of T. tetraptera exhibited high total phenolic contents (135 and 143 mg GAE/g, respectively) and demonstrated the best antioxidant activity. Furthermore, the hydromethanolic extract of T. tetraptera showed the most substantial biofilm inhibition (70.15%) compared to the other extracts from both plants. Importantly, none of the extracts showed signs of toxicity at a dosage of 2000 mg/kg body weight. In conclusion, T. tetraptera and P. chilensis fruits contain compounds responsible for significant antioxidant activity and demonstrate efficacy against P. aeruginosa PAO1. These fruits could be potential candidates for developing phyto-drugs to combat antibacterial resistance in respiratory tract infections.
References
Abubakar, A. R., & Haque, M. (2020). Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. Journal of pharmacy & bioallied sciences, 12(1), 1–10. https://doi.org/10.4103/jpbs.JPBS_175_19
Adadi, P., & Kanwugu, O. N. (2020). Potential application of tetrapleura tetraptera and hibiscus sabdariffa (Malvaceae) in designing highly flavoured and bioactive pito with functional properties. Beverages, 6(2), 1–32. https://doi.org/10.3390/beverages6020022
Adusei, S., Otchere, J. K., Oteng, P., Mensah, R. Q., & Tei-Mensah, E. (2019). Phytochemical analysis, antioxidant and metal chelating capacity of Tetrapleura tetraptera. Heliyon, 5(11), e02762. https://doi.org/10.1016/j.heliyon.2019.e02762
Barnes V, L., Heithoff, D. M., Mahan, S. P., House, J. K., & Mahan, M. J. (2023). Antimicrobial susceptibility testing to evaluate minimum inhibitory concentration values of clinically relevant antibiotics. STAR protocols, 4(3), 102512. https://doi.org/10.1016/j.xpro.2023.102512
Mengistu B., Adamu T., Gizaw T., Eyasu T., Frehywot E., et al. (2024). Epidemiology of circulating influenza viruses in Ethiopia during the COVID-19 Pandemic: Evidence from National Severe Acute Respiratory Infection and Influenza-Like Illness Sentinel Surveillance (January 2021-August 2022). African Journal of Health Sciences and Technology, 6(1), 1-9.
Bonsou, I. N., Mbaveng, A. T., Nguenang, G. S., Chi, G. F., Kuete, V., & Efferth, T. (2022). Cytotoxicity, acute and sub-chronic toxicities of the fruit extract of Tetrapleura tetraptera (Schumm. & Thonn.) Taub. (Fabaceae). BMC complementary medicine and therapies, 22(1), 178. https://doi.org/10.1186/s12906-022-03659-1
Delfanian, M., Esmaeilzadeh Kenari, R., & Sahari, M. A. (2016). Utilization of Jujube Fruit (Ziziphus mauritiana Lam.) Extracts as Natural Antioxidants in Stability of Frying Oil. International Journal of Food Properties, 19(4), 789–801. https://doi.org/10.1080/10942912.2015.1043638
Dincer, S., Uslu, F. M., & Delik, A. (2020). Antibiotic Resistance in Biofilm. In S. Dincer, M. S. Özdenefe, & A. Arkut (Eds.), Bacterial Biofilms (pp. 1–14). IntechOpen.
Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623–633. https://doi.org/10.1038/NRMICRO2415
Ghosh, K., Chakraborty, A. S., & SenGupta, S. (2023). Identifying spatial clustering of diarrhoea among children under 5 years across 707 districts in India: a cross sectional study. BMC pediatrics, 23(1), 272. https://doi.org/10.1186/s12887-023-04073-3
Grace, A., Sahu, R., Owen, D. R., & Dennis, V. A. (2022). Pseudomonas aeruginosa reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review. Frontiers in microbiology, 13, 1023523. https://doi.org/10.3389/ fmicb.2022.1023523
Hinneburg, I., Dorman, D., & Hiltunen, R. (2006). Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 97(1), 122–129. https://doi.org/10.1016/ j.foodchem.2005.03.028
Institut National de la Statistique et de la Démographie (INSD). (2022). Enquête Démographique et de Santé 2021 du Burkina Faso : Indicateurs clés. Rapport Des Indicateurs-Cleee2és, juillet 20(2021), 1–77.
Jalal, N., Hariri, S., Abdel-razik, N., Alzahrani, A., Khan, S., & Bantun, F. (2023). Synergistic Effect of Biogenic Silver Nanoparticles and Antibiotics Against Multidrug-Resistant Pseudomonas aeruginosa. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology, 15(1), 319–337. https://doi.org/10.21608/eajbsc.2023.303331
Jiang, Q., Chen, J., Yang, C., Yin, Y., & Yao, K. (2019). Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases. BioMed research international, 2019, 2015978. https://doi.org/10.1155/2019/2015978
Kaler, J., Hussain, A., Patel, K., Hernandez, T., & Ray, S. (2023). Respiratory Syncytial Virus: A Comprehensive Review of Transmission, Pathophysiology, and Manifestation. Cureus, 15(3), e36342. https://doi.org/10.7759/cureus.36342
Kang, Y., Xie, L., Yang, J., & Cui, J. (2023). Optimal treatment of ceftazidime-avibactam and aztreonam-avibactam against bloodstream infections or lower respiratory tract infections caused by extensively drug-resistant or pan drug-resistant (XDR/PDR) Pseudomonas aeruginosa. Frontiers in cellular and infection microbiology, 13, 1023948. https://doi.org/10.3389/fcimb.2023.1023948
Keyhanian, A., Mohammadimehr, M., Nojoomi, F., Naghoosi, H., Khomartash, M. S., & Chamanara, M. (2023). Inhibition of bacterial adhesion and anti-biofilm effects of Bacillus cereus and Serratia nematodiphila biosurfactants against Staphylococcus aureus and Pseudomonas aeruginosa. Iranian journal of microbiology, 15(3), 425–432. https://doi.org/10.18502/ijm.v15i3.12903
Khan, M., Stapleton, F., Summers, S., Rice, S. A., & Willcox, M. D. P. (2020). Antibiotic Resistance Characteristics of Pseudomonas aeruginosa Isolated from Keratitis in Australia and India. Antibiotics (Basel, Switzerland), 9(9), 600. https://doi.org/10.3390/antibiotics9090600
Kuate, D., Kengne, A. P., Biapa, C. P., Azantsa, B. G., & Abdul Manan Bin Wan Muda, W. (2015). Tetrapleura tetraptera spice attenuates high-carbohydrate, high-fat diet-induced obese and type 2 diabetic rats with metabolic syndrome features. Lipids in health and disease, 14, 50. https://doi.org/10.1186/s12944-015-0051-0
Lorenzo, M. E., Casero, C. N., Gómez, P. E., Segovia, A. F., Figueroa, L. C., et al. (2022). Antioxidant characteristics and antibacterial activity of native woody species from Catamarca, Argentina. Natural product research, 36(4), 885–890. https://doi.org/10.1080/14786419.2020.1839461
Manga, E., Brostaux, Y., Ngondi, J. L., & Sindic, M. (2020). Optimisation of phenolic compounds and antioxidant activity extraction conditions of a roasted mix of Tetrapleura tetraptera (Schumach & Thonn.) and Aframomum citratum (C. Pereira) fruits using response surface methodology (RSM). Saudi journal of biological sciences, 27(8), 2054–2064. https://doi.org/10.1016/j.sjbs.2020.05.003
Nwakiban, A. P. A., Fumagalli, M., Piazza, S., Magnavacca, A., Martinelli, G., et al. (2020). Dietary Cameroonian Plants Exhibit Anti-Inflammatory Activity in Human Gastric Epithelial Cells. Nutrients, 12(12), 3787. https://doi.org/10.3390/nu12123787
Nwidu, L., Alikwe, P., Elmorsy, E., & Carter, W. (2019). An Investigation of Potential Sources of Nutraceuticals from the Niger Delta Areas, Nigeria for Attenuating Oxidative Stress. Medicines, 6(1), 15. https://doi.org/10.3390/medicines6010015
OECD. (2004). Ligne directrice de l’ocde pour les essais de produits chimiques: absorption cutanée; méthode in vivo 427 (Issue 9).
Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare (Basel, Switzerland), 11(13), 1946. https://doi.org/10.3390/healthcare11131946
Sasmito, W. A., Wijayanti, A. D., Fitriana, I., & Sari, P. W. (2017). Pengujian Toksisitas Akut Obat Herbal Pada Mencit Berdasarkan Organization for Economic Co-operation and Development (OECD). Jurnal Sain Veteriner, 33(2), 234–239. https://doi.org/10.22146/jsv.17924
Schmeda-Hirschmann, G., Quispe, C., Soriano, M.delP., Theoduloz, C., Jiménez-Aspée, F., Pérez, M. J., Cuello, A. S., & Isla, M. I. (2015). Chilean prosopis mesocarp flour: phenolic profiling and antioxidant activity. Molecules (Basel, Switzerland), 20(4), 7017–7033. https://doi.org/10.3390/molecules20047017
Sebe, G.O., Oghenerhoro, S.O., Jonathan, O. E., Anyaogu, E.V., Adebowale, A.D., & Ntomchukwu, R.C. (2023). Enhancing Accumulation and Penetration Efficiency of Next-Generation Antibiotics to Mitigate Antibiotic Resistance in Pseudomonas aeruginosa PAO1. Journal of Biomedical Science and Engineering, 16(08), 107–120. https://doi.org/10.4236/jbise.2023.168008
Shraim, A. M., Ahmed, T. A., Rahman, M. M., & Hijji, Y. M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. Lwt, 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932
Singleton, V. L., Orthofer, R., Lamuela, R., & Rosa, M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In P. Lester (Ed.), Methods in Enzymology Academic Press, 299, 152–178.
Stewart, P. S. (2002). Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology, 292(2), 107–113. https://doi.org/10.1078/1438-4221-00196
Uppala, S. S., Zhou, X. G., Liu, B., & Wu, M. (2019). Plant-Based Culture Media for Improved Growth and Sporulation of Cercospora janseana. Plant disease, 103(3), 504–508. https://doi.org/10.1094/PDIS-05-18-0814-RE
Velazquez, C., Navarro, M., Acosta, A., Angulo, A., Dominguez, Z., et al. (2007). Antibacterial and free-radical scavenging activities of Sonoran propolis. Journal of Applied Microbiology, 103(5), 1747–1756. https://doi.org/10.1111/j.1365-2672.2007.03409.x
Wood, S. J., & Kuzel, T. M. (2023). and Therapeutics. Cells, 12(199), 1–37.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.