Identification of Genetic Diversity among Mutant Taro (Colocasia esculenta L. cv WANGI) Using Agro-Morphological Trait and Simple Sequence Repeats (SSR) Molecular Markers
DOI:
https://doi.org/10.18006/2022.10(2).359.368Keywords:
Agro-morphological analysis, Colocasia esculenta L. cv Wangi, M1V4 generation, Mutant lines, Genetic diversity TaroAbstract
Taro (Colocasia esculenta) is one of the traditional crops with enormous sources of dietary fiber, carbohydrates, vitamins, and minerals contents. Mutation breeding using gamma radiation is one of the most preferred approaches used to induce mutation in taro studies. Molecular markers are widely used to detect such induced mutation and genetic diversity in plants. Therefore, the present study was carried out to evaluate genetic diversity among irradiated taro genotypes in comparison with standard taro variety by using simple sequence repeats (SSR). A total of 200 of M1V4 taro genotypes were used in this study derived from segregating population of chronic-gamma irradiated taro cv Wangi with different ranges of gamma dose. The agro-morphological results revealed that genotype exposure in T6 (120.12 Gy) has the highest plant height (54.53 cm), leaf length (32.24 cm), and leaf width (24.87 cm). Corm's weight was decreased significantly with an increased dose of treatment. All mutants recorded a lower number of corm weight as compared with the control genotype. Out of 10 SSR primers tested, 9 primers have successfully amplified 43 amplicons. The polymorphism information content (PIC) values of SSR markers ranged from 0.20 to 0.80. Cluster analysis classified taro into 3 subgroups mutant and parent genotypes. The results clearly showed that SSR markers are important tools to distinguish mutant genotypes and confirmed their usefulness for phylogenetic studies. Finally, the present investigation indicated that genotypes exposed by T6 (120.12 Gy) are promising high-yielding genotypes that can be recommended as new cultivars and possessed an attractive phenotype appropriate for ornamental use.
References
Abdullah, S., Fauzi, N.Y.M., Khalid, A.K., Osman, M., & Mohamad, A. (2021). Effect of Gamma Rays on Seed Germination, Survival Rate and Morphology of Stevia rebaudiana Hybrid. Malaysian Journal Fundemantal Applied Science, 17(5), 543-549. DOI: https://doi.org/10.11113/mjfas.v17n5.2157
Anh, V.L., Inoue, Y., Asuke, S., Vy, T.T.P., Anh, N.T., & Wang, S. (2018). Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. Molecular Plant Pathology, 19, 1252–1256. DOI: https://doi.org/10.1111/mpp.12609
Cretazzo, E., Moreno Sanz, P., Lorenzi, S., Benítez, M.L., Velasco, L., & Emanuelli, F. (2022). Genetic Characterization by SSR Markers of a Comprehensive Wine Grape Collection Conserved at Rancho de la Merced (Andalusia, Spain). Plants, 11, 1088. DOI: https://doi.org/10.3390/plants11081088
Fadli, N., Syarif, Z., Satria, B., & Akhir, N. (2018). The effect of gamma cobalt-60 ray irradiation on cultivar growth in taro white (Xhanthosoma sagittifolium L.). International Journal Environmental Biotechnology Agricultural, 3(6), 268284. DOI: https://doi.org/10.22161/ijeab/3.6.9
Gharib, A.H. (2021). Inducing Genetic Variation in Taro Using Gamma Irradiation. Egyptian Journal Basic Applied Science, 36(3), 73-86. DOI: https://doi.org/10.21608/ejas.2021.183781
Hasan, N.A., Suhaimi, L., Ahmad, F., Mohamed Bahari, U., Harun, A.R., & Rafii, M.Y (2020). Effects of Chronic Gamma Irradiation on the Growth of Local Taro Variety (Colocasia esculenta L. WANGI). Jurnal Sains Nuklear Malaysia, 32(2), 23 – 30.
International Plant Genetic Resources Institute (IPGRI) (2000). IPGRI Annual Report (1999). Rome, Italy: IPGRI (pp. 40)
Kazama, Y., Saito, H., Yamamoto, Y.Y., Hayashi, Y., et al. (2008).LET-dependent effects of heavy-ion beam irradiation in Arabidopsis thaliana. Plant Biotechnology, 25, 113– 117. DOI: https://doi.org/10.5511/plantbiotechnology.25.113
Khatemenla, Alam, S., Barooah, M., Phookan, D.B., et al. (2019) SSR Marker-Based Molecular Characterization of Some Upland Taro (Colocasia esculenta L. Schott) Cultivars of North-East India. International Journal of Current Microbiology and Applied Sciences, 8(06), 2310-2320. DOI: https://doi.org/10.20546/ijcmas.2019.806.274
Khumaida, N., Ardie, S.W., & Astuti, M.S. (2017). Characterization of Irradiation Induced Mutants of Cassava (Manihot esculenta Crantz) Generated from Jame-jame and Adira-4 Genotypes at M1V2 Generation. KnE life science, 22-28. DOI https://doi.org/10.18502/kls.v2i6.1016. DOI: https://doi.org/10.18502/kls.v2i6.1016
Koffi, J., Koffi, K., Bonny, S., & Bi, A. (2021) Genetic Diversity of Taro Landraces from Côte d’Ivoire Based on Qualitative Traits of Leaves. Agricultural Sciences, 12, 1433-1446. DOI: https://doi.org/10.4236/as.2021.1212091
Korir, N.K., Han, J., Shangguan, L., Wang, C., et al. (2013). Plant variety and cultivar identification: advances and prospects. Critical Review Biotechnology, 33(2), 111-125. DOI: https://doi.org/10.3109/07388551.2012.675314
Lee, H.Y., Moon, S., Ro, H.S., Chung, J.W., & Ryu, H. (2020). Analysis of Genetic Diversity and Population Structure of Wild Strains and Cultivars Using Genomic SSR Markers in Lentinula edodes. Mycobiology, 48(2), 115–121. DOI: https://doi.org/10.1080/12298093.2020.1727401
Legesse, T., & Bekele, T. (2021). Evaluation of improved taro (Colocasia esculenta (L.) Schott) genotypes on growth and yield performance in North-Bench woreda of Bench-Sheko zone, South-Western Ethiopia. Heliyon, 7(12), e08630. DOI: https://doi.org/10.1016/j.heliyon.2021.e08630
Ma, L., Kong, F., Sun, K., Wang, T., & Guo. T. (2021) From Classical Radiation to Modern Radiation: Past, Present, and Future of Radiation Mutation Breeding. Frontier Public Health, 9,768071. DOI: https://doi.org/10.3389/fpubh.2021.768071
Manzila, I., Priyatno, T.P., Nugroho, K., Terryana, R.T., & Hidayat, S.H. (2020). Molecular and morphological characterization of EMS-induced chili pepper mutants resistant to Chili veinal mottle virus. Biodiversity Journal, 21(4), 1448-1457. DOI: https://doi.org/10.13057/biodiv/d210424
Matsuyama, T., Watanabe, M., Murota, Y., Nakata, N., et al. (2020). Efficient mutation induction using heavy-ion beam irradiation and simple genomic screening with random primers in taro (Colocasia esculenta L. Schott). Scientia Horticulturae, 272,109568. DOI: https://doi.org/10.1016/j.scienta.2020.109568
Mbi, T.K., Godswill, N.F., Brice, T.L., & Emmanuel, Y. (2021). Field management of Taro (Colocasia esculenta (L.) Schott) leaf blight via fungicidal spray of foliage. Journal Cameroon Academy Science, 16(3), 197-208. DOI: https://doi.org/10.4314/jcas.v16i3.2
Mishra, D., Bhoi, L., Dash, M., Tripathy, S.K., et al. (2019). Mutagenic effectiveness and efficiency of EMS and gamma rays on rice bean (Vignaumbellate (Thunb) Ohwi and Ohashi): An underutilized legume crop. International Journal of Conservation Science, 7(3),2060-2064.
Miyasaka, S.C., Renee, M.B., Michael, B., Kantar, M.H., Thomas, W.R., & Paudel, M.S. (2019). Genetic Diversity in Taro (Colocasia esculenta). In: Nandwani, D. (eds) Genetic Diversity in Horticultural Plants, Environmental Development Sustainability, vol 22, (pp 191–215), Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-96454-6_7
Nurilmala, F., & Mardiana, D. (2018). Nutrients and Anti-nutrients Content Analysis of Bogor Taro Mutant Clone (Colocasia esculenta). IOP Conference Series: Earth and Environmental Science, 334,012070. DOI: https://doi.org/10.1088/1755-1315/334/1/012070
Okpul, T., Mace, E.S., Godwin, I.D., Singh, D., & Wagih, M.E. (2005). Evaluation of variability among breeding lines and cultivars of taro (Colocasia esculenta) in Papua New Guinea using ISSR fingerprinting and agro-morphological characterization. Plant Genetic Resources Newsletter, 143, 8-16.
Oladosu, Y., Rafii, M.Y., Abdullah, N., Malek, M.A., et al. (2015). Genetic variability and diversity of mutant rice revealed by quantitative traits and molecular markers. Agrociencia Uruguay, 49(3), 249-266.
Olasupo, F.O., Ilori, C.O., Stanley, E.A., Owoeye, T.E., & Igwe, D.O. (2018). Genetic Analysis of Selected Mutants of Cowpea (Vigna unguiculata [L.] Walp) Using Simple Sequence Repeat and rcbL Markers. American Journal Plant Science, 9(13), 2728. DOI: https://doi.org/10.4236/ajps.2018.913199
Rasco, J.L.S., Mendoza, M.R.R., & Abustan, M.A.M. (2016). Molecular Characterization of Taro [Colocasia esculenta (L.) Schott] Using SSR Markers. Philippine Journal Crops Sciences, 41(3),65-73.
Romero, M., Mujica, A., Pineda, E., Ccamapaza, Y., & Zavalla, N. (2019). Genetic identity based on simple sequence repeat (SSR) markers for Quinoa (Chenopodium quinoa Willd.). Ciencies Investigacion Agraria, 46(2), 166-168. DOI: https://doi.org/10.7764/rcia.v46i2.2144
Sahoo, B.B., Kole, P.C., & Sahoo, M.R. (2015). Effects of γ Irradiation on Leaf Blight Disease of Some Taro (Colocasia esculenta (L.) Schott) Genotypes. International Journal Biology Resources, 6(1),007-014. DOI: https://doi.org/10.5958/0976-4038.2015.00002.0
Seetohul, S., Puchooa, D., & Ranghoo-Sanmukhiya, V.M. (2007). Genetic Improvement of Taro (Colocasia esculenta var esculenta) through in-vitro mutagenesis. University Mauritius Research Journal, 13A, 79-89.
Shahril, A.R., Azman, N., Kamaruzaman, R., Amri, S.Y., et al. (2020). Genetic diversity of released Malaysian rice varieties based on single nucleotide polymorphism markers. Czech Journal Genetics Plant Breeding, 56, 62-70. DOI: https://doi.org/10.17221/58/2019-CJGPB
Sianipar, N.F., Laurent, D., Purnamaningsih, R., & Darwati, I. (2015). Genetic variation of the first generation of rodent tuber
(Typhonium flagelliforme Lodd.) mutants based on RAPD molecular markers. HAYATI Journal Bioscience, 22(2), 98-104. DOI: https://doi.org/10.4308/hjb.22.2.98
Sianipara, N.F., Maarisit, W.A. (2015). Detection of Gamma-Irradiated Mutant of Rodent Tuber (TyphoniumflagelliformeLodd.) In Vitro Culture by RAPD Molecular Marker. Procedia Chemistry, 14, 285 – 294 DOI: https://doi.org/10.1016/j.proche.2015.03.040
Singh, S.K., Lavanya, G.R., Bhat, K.V., Babu, G.S., et al. (2012). Microsatellite markers revealed genetic diversity in mungbean mutant lines. Indian Journal Hill Farming, 25(1), 38-43
Wang, S., Ge, S., Colijn, C., Biller, P., Wang, L., & Elliott, L. T. (2021). Estimating Genetic Similarity Matrices Using Phylogenies. Journal of computational biology: a journal of computational molecular cell biology, 28(6), 587–600. DOI: https://doi.org/10.1089/cmb.2020.0375
Zulkhairi, A.M., Razali, M., Umikalsum, M.B., Norfaizal, G.M., Athirah, A.A., & Aisyah, M.S. (2020). Determination of Oxalates in Corms of Selected Taro (Colocasia esculenta) Varieties in Malaysia Using Ultra High-Performance Liquid Chromatography. Asian Journal Chemistry Sciences, 7(3), 28-37. DOI: https://doi.org/10.9734/ajocs/2020/v7i319023
Downloads
Published
How to Cite
License
Copyright (c) 2022 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.