Identification of Genetic Diversity among Mutant Taro (Colocasia esculenta L. cv WANGI) Using Agro-Morphological Trait and Simple Sequence Repeats (SSR) Molecular Markers

Authors

  • NORAISHAH HASAN Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
  • norfarah nadhirah noruddin Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
  • Abdul Rahim Harun Agrotechnology & Biosciences Division, Agency Nuclear Malaysia, 43000 Kajang, Malaysia;
  • Faiz AHMAD Agrotechnology & Biosciences Division, Agency Nuclear Malaysia, 43000 Kajang, Malaysia;
  • Muhammad Noh Fit RS enterprise, Lot 3924, Lorong Siantan, Kampung Sungai Kelambu, 42700 Banting, Malaysia
  • Shakinah Salleh Agrotechnology & Biosciences Division, Agency Nuclear Malaysia, 43000 Kajang, Malaysia
  • umikalsom Hj. Bahari Agrobiodiversity and Environment Research Centre, Malaysian Agricultural Research and Development Institute, 43400 Serdang, Malaysia

DOI:

https://doi.org/10.18006/2022.10(2).359.368

Keywords:

Agro-morphological analysis, Colocasia esculenta L. cv Wangi, M1V4 generation, Mutant lines, Genetic diversity Taro

Abstract

Taro (Colocasia esculenta) is one of the traditional crops with enormous sources of dietary fiber, carbohydrates, vitamins, and minerals contents. Mutation breeding using gamma radiation is one of the most preferred approaches used to induce mutation in taro studies. Molecular markers are widely used to detect such induced mutation and genetic diversity in plants. Therefore, the present study was carried out to evaluate genetic diversity among irradiated taro genotypes in comparison with standard taro variety by using simple sequence repeats (SSR). A total of 200 of M1V4 taro genotypes were used in this study derived from segregating population of chronic-gamma irradiated taro cv Wangi with different ranges of gamma dose. The agro-morphological results revealed that genotype exposure in T6 (120.12 Gy) has the highest plant height (54.53 cm), leaf length (32.24 cm), and leaf width (24.87 cm). Corm's weight was decreased significantly with an increased dose of treatment. All mutants recorded a lower number of corm weight as compared with the control genotype. Out of 10 SSR primers tested, 9 primers have successfully amplified 43 amplicons. The polymorphism information content (PIC) values of SSR markers ranged from 0.20 to 0.80. Cluster analysis classified taro into 3 subgroups mutant and parent genotypes. The results clearly showed that SSR markers are important tools to distinguish mutant genotypes and confirmed their usefulness for phylogenetic studies. Finally, the present investigation indicated that genotypes exposed by T6 (120.12 Gy) are promising high-yielding genotypes that can be recommended as new cultivars and possessed an attractive phenotype appropriate for ornamental use.

References

Abdullah, S., Fauzi, N.Y.M., Khalid, A.K., Osman, M., & Mohamad, A. (2021). Effect of Gamma Rays on Seed Germination, Survival Rate and Morphology of Stevia rebaudiana Hybrid. Malaysian Journal Fundemantal Applied Science, 17(5), 543-549. DOI: https://doi.org/10.11113/mjfas.v17n5.2157

Anh, V.L., Inoue, Y., Asuke, S., Vy, T.T.P., Anh, N.T., & Wang, S. (2018). Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. Molecular Plant Pathology, 19, 1252–1256. DOI: https://doi.org/10.1111/mpp.12609

Cretazzo, E., Moreno Sanz, P., Lorenzi, S., Benítez, M.L., Velasco, L., & Emanuelli, F. (2022). Genetic Characterization by SSR Markers of a Comprehensive Wine Grape Collection Conserved at Rancho de la Merced (Andalusia, Spain). Plants, 11, 1088. DOI: https://doi.org/10.3390/plants11081088

Fadli, N., Syarif, Z., Satria, B., & Akhir, N. (2018). The effect of gamma cobalt-60 ray irradiation on cultivar growth in taro white (Xhanthosoma sagittifolium L.). International Journal Environmental Biotechnology Agricultural, 3(6), 268284. DOI: https://doi.org/10.22161/ijeab/3.6.9

Gharib, A.H. (2021). Inducing Genetic Variation in Taro Using Gamma Irradiation. Egyptian Journal Basic Applied Science, 36(3), 73-86. DOI: https://doi.org/10.21608/ejas.2021.183781

Hasan, N.A., Suhaimi, L., Ahmad, F., Mohamed Bahari, U., Harun, A.R., & Rafii, M.Y (2020). Effects of Chronic Gamma Irradiation on the Growth of Local Taro Variety (Colocasia esculenta L. WANGI). Jurnal Sains Nuklear Malaysia, 32(2), 23 – 30.

International Plant Genetic Resources Institute (IPGRI) (2000). IPGRI Annual Report (1999). Rome, Italy: IPGRI (pp. 40)

Kazama, Y., Saito, H., Yamamoto, Y.Y., Hayashi, Y., et al. (2008).LET-dependent effects of heavy-ion beam irradiation in Arabidopsis thaliana. Plant Biotechnology, 25, 113– 117. DOI: https://doi.org/10.5511/plantbiotechnology.25.113

Khatemenla, Alam, S., Barooah, M., Phookan, D.B., et al. (2019) SSR Marker-Based Molecular Characterization of Some Upland Taro (Colocasia esculenta L. Schott) Cultivars of North-East India. International Journal of Current Microbiology and Applied Sciences, 8(06), 2310-2320. DOI: https://doi.org/10.20546/ijcmas.2019.806.274

Khumaida, N., Ardie, S.W., & Astuti, M.S. (2017). Characterization of Irradiation Induced Mutants of Cassava (Manihot esculenta Crantz) Generated from Jame-jame and Adira-4 Genotypes at M1V2 Generation. KnE life science, 22-28. DOI https://doi.org/10.18502/kls.v2i6.1016. DOI: https://doi.org/10.18502/kls.v2i6.1016

Koffi, J., Koffi, K., Bonny, S., & Bi, A. (2021) Genetic Diversity of Taro Landraces from Côte d’Ivoire Based on Qualitative Traits of Leaves. Agricultural Sciences, 12, 1433-1446. DOI: https://doi.org/10.4236/as.2021.1212091

Korir, N.K., Han, J., Shangguan, L., Wang, C., et al. (2013). Plant variety and cultivar identification: advances and prospects. Critical Review Biotechnology, 33(2), 111-125. DOI: https://doi.org/10.3109/07388551.2012.675314

Lee, H.Y., Moon, S., Ro, H.S., Chung, J.W., & Ryu, H. (2020). Analysis of Genetic Diversity and Population Structure of Wild Strains and Cultivars Using Genomic SSR Markers in Lentinula edodes. Mycobiology, 48(2), 115–121. DOI: https://doi.org/10.1080/12298093.2020.1727401

Legesse, T., & Bekele, T. (2021). Evaluation of improved taro (Colocasia esculenta (L.) Schott) genotypes on growth and yield performance in North-Bench woreda of Bench-Sheko zone, South-Western Ethiopia. Heliyon, 7(12), e08630. DOI: https://doi.org/10.1016/j.heliyon.2021.e08630

Ma, L., Kong, F., Sun, K., Wang, T., & Guo. T. (2021) From Classical Radiation to Modern Radiation: Past, Present, and Future of Radiation Mutation Breeding. Frontier Public Health, 9,768071. DOI: https://doi.org/10.3389/fpubh.2021.768071

Manzila, I., Priyatno, T.P., Nugroho, K., Terryana, R.T., & Hidayat, S.H. (2020). Molecular and morphological characterization of EMS-induced chili pepper mutants resistant to Chili veinal mottle virus. Biodiversity Journal, 21(4), 1448-1457. DOI: https://doi.org/10.13057/biodiv/d210424

Matsuyama, T., Watanabe, M., Murota, Y., Nakata, N., et al. (2020). Efficient mutation induction using heavy-ion beam irradiation and simple genomic screening with random primers in taro (Colocasia esculenta L. Schott). Scientia Horticulturae, 272,109568. DOI: https://doi.org/10.1016/j.scienta.2020.109568

Mbi, T.K., Godswill, N.F., Brice, T.L., & Emmanuel, Y. (2021). Field management of Taro (Colocasia esculenta (L.) Schott) leaf blight via fungicidal spray of foliage. Journal Cameroon Academy Science, 16(3), 197-208. DOI: https://doi.org/10.4314/jcas.v16i3.2

Mishra, D., Bhoi, L., Dash, M., Tripathy, S.K., et al. (2019). Mutagenic effectiveness and efficiency of EMS and gamma rays on rice bean (Vignaumbellate (Thunb) Ohwi and Ohashi): An underutilized legume crop. International Journal of Conservation Science, 7(3),2060-2064.

Miyasaka, S.C., Renee, M.B., Michael, B., Kantar, M.H., Thomas, W.R., & Paudel, M.S. (2019). Genetic Diversity in Taro (Colocasia esculenta). In: Nandwani, D. (eds) Genetic Diversity in Horticultural Plants, Environmental Development Sustainability, vol 22, (pp 191–215), Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-96454-6_7

Nurilmala, F., & Mardiana, D. (2018). Nutrients and Anti-nutrients Content Analysis of Bogor Taro Mutant Clone (Colocasia esculenta). IOP Conference Series: Earth and Environmental Science, 334,012070. DOI: https://doi.org/10.1088/1755-1315/334/1/012070

Okpul, T., Mace, E.S., Godwin, I.D., Singh, D., & Wagih, M.E. (2005). Evaluation of variability among breeding lines and cultivars of taro (Colocasia esculenta) in Papua New Guinea using ISSR fingerprinting and agro-morphological characterization. Plant Genetic Resources Newsletter, 143, 8-16.

Oladosu, Y., Rafii, M.Y., Abdullah, N., Malek, M.A., et al. (2015). Genetic variability and diversity of mutant rice revealed by quantitative traits and molecular markers. Agrociencia Uruguay, 49(3), 249-266.

Olasupo, F.O., Ilori, C.O., Stanley, E.A., Owoeye, T.E., & Igwe, D.O. (2018). Genetic Analysis of Selected Mutants of Cowpea (Vigna unguiculata [L.] Walp) Using Simple Sequence Repeat and rcbL Markers. American Journal Plant Science, 9(13), 2728. DOI: https://doi.org/10.4236/ajps.2018.913199

Rasco, J.L.S., Mendoza, M.R.R., & Abustan, M.A.M. (2016). Molecular Characterization of Taro [Colocasia esculenta (L.) Schott] Using SSR Markers. Philippine Journal Crops Sciences, 41(3),65-73.

Romero, M., Mujica, A., Pineda, E., Ccamapaza, Y., & Zavalla, N. (2019). Genetic identity based on simple sequence repeat (SSR) markers for Quinoa (Chenopodium quinoa Willd.). Ciencies Investigacion Agraria, 46(2), 166-168. DOI: https://doi.org/10.7764/rcia.v46i2.2144

Sahoo, B.B., Kole, P.C., & Sahoo, M.R. (2015). Effects of γ Irradiation on Leaf Blight Disease of Some Taro (Colocasia esculenta (L.) Schott) Genotypes. International Journal Biology Resources, 6(1),007-014. DOI: https://doi.org/10.5958/0976-4038.2015.00002.0

Seetohul, S., Puchooa, D., & Ranghoo-Sanmukhiya, V.M. (2007). Genetic Improvement of Taro (Colocasia esculenta var esculenta) through in-vitro mutagenesis. University Mauritius Research Journal, 13A, 79-89.

Shahril, A.R., Azman, N., Kamaruzaman, R., Amri, S.Y., et al. (2020). Genetic diversity of released Malaysian rice varieties based on single nucleotide polymorphism markers. Czech Journal Genetics Plant Breeding, 56, 62-70. DOI: https://doi.org/10.17221/58/2019-CJGPB

Sianipar, N.F., Laurent, D., Purnamaningsih, R., & Darwati, I. (2015). Genetic variation of the first generation of rodent tuber

(Typhonium flagelliforme Lodd.) mutants based on RAPD molecular markers. HAYATI Journal Bioscience, 22(2), 98-104. DOI: https://doi.org/10.4308/hjb.22.2.98

Sianipara, N.F., Maarisit, W.A. (2015). Detection of Gamma-Irradiated Mutant of Rodent Tuber (TyphoniumflagelliformeLodd.) In Vitro Culture by RAPD Molecular Marker. Procedia Chemistry, 14, 285 – 294 DOI: https://doi.org/10.1016/j.proche.2015.03.040

Singh, S.K., Lavanya, G.R., Bhat, K.V., Babu, G.S., et al. (2012). Microsatellite markers revealed genetic diversity in mungbean mutant lines. Indian Journal Hill Farming, 25(1), 38-43

Wang, S., Ge, S., Colijn, C., Biller, P., Wang, L., & Elliott, L. T. (2021). Estimating Genetic Similarity Matrices Using Phylogenies. Journal of computational biology: a journal of computational molecular cell biology, 28(6), 587–600. DOI: https://doi.org/10.1089/cmb.2020.0375

Zulkhairi, A.M., Razali, M., Umikalsum, M.B., Norfaizal, G.M., Athirah, A.A., & Aisyah, M.S. (2020). Determination of Oxalates in Corms of Selected Taro (Colocasia esculenta) Varieties in Malaysia Using Ultra High-Performance Liquid Chromatography. Asian Journal Chemistry Sciences, 7(3), 28-37. DOI: https://doi.org/10.9734/ajocs/2020/v7i319023

Downloads

Published

2022-04-30

How to Cite

HASAN, N., noruddin, norfarah nadhirah, Harun, A. R., AHMAD, F., Muhammad Noh, Salleh, S., & Hj. Bahari, umikalsom. (2022). Identification of Genetic Diversity among Mutant Taro (Colocasia esculenta L. cv WANGI) Using Agro-Morphological Trait and Simple Sequence Repeats (SSR) Molecular Markers. Journal of Experimental Biology and Agricultural Sciences, 10(2), 359–368. https://doi.org/10.18006/2022.10(2).359.368

Issue

Section

RESEARCH ARTICLES

Categories