Medicinal value of Lippia multiflora Mondenke flowers in the fight of oral and dental infections
DOI:
https://doi.org/10.18006/2024.12(5).686.693Keywords:
Lippia multiflora, Biofilm, Oral infection, S. aureus, S. mutansAbstract
Oral infections pose a significant global health issue. This study assessed the antibacterial properties of methanol and dichloromethane extracts from Lippia multiflora flowers against Staphylococcus aureus ATCC 43300 and Streptococcus mutans ATCC 2517, two bacteria known to cause oral infections. The study measured the ability of these flower extracts to inhibit the growth and biofilm formation of S. aureus and S. mutans using micro-dilution and crystal violet methods, respectively. Additionally, we analyzed the presence of secondary metabolites in the extracts both qualitatively and quantitatively. The antioxidant properties of the extracts were evaluated using DPPH, ABTS, and FRAP methods. The results indicated that the dichloromethane extract demonstrated a more substantial bactericidal effect than the methanolic extract against S. mutans and S. aureus, with minimal bactericidal concentrations of 0.25 ± 0.02 mg/mL and 3.13 ± 0.30 mg/mL, respectively. Furthermore, the dichloromethane extract at a 100 µg/mL concentration exhibited the highest anti-biofilm activity against both S. aureus and S. mutans. Phytochemical screening revealed the presence of alkaloids, flavonoids, quinones, and tannins in both extracts. The total phenolic content was higher in the methanolic extract (49.57 ± 2.74 mg EAG/100 mg) compared to the dichloromethane extract (25.71 ± 0.39 mg EAG/100 mg). Similarly, the total flavonoid content was more significant in the methanolic extract (2.87 ± 0.049 mg EQ/100 mg) than in the dichloromethane extract (2.24 ± 0.02 mg EQ/100 mg). The methanolic extract also exhibited superior anti-DPPH and anti-ABTS activities, as well as a higher Fe (III) reduction potential than the dichloromethane extract (P < 0.05). These findings suggest that L. multiflora flowers could serve as a potential source of antimicrobial agents for combating oral infections.
References
Abranches, J., Zeng, L., Kajfasz, J. K., Palmer, S. R., Chakraborty, B., Wen, Z. T., Richards, V. P., Brady, L. J., & Lemos, J. A. (2018). Biology of Oral Streptococci. Microbiology spectrum, 6(5), 10.1128/microbiolspec.GPP3-0042-2018. https://doi.org/ 10.1128/microbiolspec.GPP3-0042-2018. DOI: https://doi.org/10.1128/microbiolspec.GPP3-0042-2018
Bangou, J. M., Abarca, N. A., Meda, N. R., Yougbaré-ziébrou, M., Millogo-rasolodimby, J., &Nacoulma, G. O. (2012). Lippia chevalieri Moldenke : A brief review of traditional uses, phytochemistry and pharmacology. International Journal of Drug Delivery, 4, 289–296.
Clauss, A., Sie, A., Zabre, P., Schmoll, J., Sauerborn, R., & Listl, S. (2021). Population-Based Prevalence of Oral Conditions as a Basis for Planning Community-Based Interventions: An Epidemiological Study From Rural Burkina Faso. Frontiers in public health, 9, 697498. https://doi.org/10.3389/fpubh.2021.697498. DOI: https://doi.org/10.3389/fpubh.2021.697498
Compaoré, M., Meda, R. N.T., Bakasso, S., Vlase, L., & Kiendrebeogo, M. (2016). Antioxidative, anti-inflammatory potentials and phytochemical profile of Commiphora africana (A. Rich.) Engl. (Burseraceae) and Loeseneriella africana (Willd.) (Celastraceae) stem leaves extracts. Asian Pacific Journal of Tropical Biomedicine, 6(8), 665–670. DOI: https://doi.org/10.1016/j.apjtb.2016.06.001 DOI: https://doi.org/10.1016/j.apjtb.2016.06.001
de Sousa Né, Y. G., Lima, W. F., Mendes, P. F. S., Baia-da-Silva, D. C., Bittencourt, L. O., et al. (2023). Dental Caries and Salivary Oxidative Stress: Global Scientific Research Landscape. Antioxidants (Basel, Switzerland), 12(2), 330. https://doi.org/10.3390/antiox12020330. DOI: https://doi.org/10.3390/antiox12020330
Del Giudice P. (2020). Skin Infections Caused by Staphylococcus aureus. Acta dermato-venereologica, 100(9), adv00110. https://doi.org/10.2340/00015555-3466. DOI: https://doi.org/10.2340/00015555-3466
Furuta, M., & Yamashita, Y. (2013). Oral Health and Swallowing Problems. Current physical medicine and rehabilitation reports, 1(4), 216–222. https://doi.org/10.1007/s40141-013-0026-x DOI: https://doi.org/10.1007/s40141-013-0026-x
Hilma, R., Hilma, A., & Almurdani, M. (2018). Determination of total phenolic, flavonoid content and free radical scavenging activity of ethanol extract Sawo stem bark (Manilkara Zapota (L.)). Conference Proceeding CelSci Tech-UMRI, 3, 62–68.
Hung, M., Moffat, R., Gill, G., Lauren, E., Ruiz-Negrón, B., Rosales, M. N., Richey, J., & Licari, F. W. (2019). Oral health as a gateway to overall health and well-being: Surveillance of the geriatric population in the United States. Special care in dentistry : official publication of the American Association of Hospital Dentists, the Academy of Dentistry for the Handicapped, and the American Society for Geriatric Dentistry, 39(4), 354–361. https://doi.org/10.1111/scd.12385. DOI: https://doi.org/10.1111/scd.12385
Kalia, V. C., Patel, S. K. S., & Lee, J. K. (2023). Bacterial biofilm inhibitors: An overview. Ecotoxicology and environmental safety, 264, 115389. https://doi.org/10.1016/j.ecoenv.2023.115389. DOI: https://doi.org/10.1016/j.ecoenv.2023.115389
Kamimura, R., Kanematsu, H., Ogawa, A., Kogo, T., Miura, H., et al. (2022). Quantitative Analyses of Biofilm by Using Crystal Violet Staining and Optical Reflection. Materials (Basel, Switzerland), 15(19), 6727. https://doi.org/10.3390/ma15196727. DOI: https://doi.org/10.3390/ma15196727
Kilinc, F., Gessler, F., Kessel, J., Dubinski, D., Won, S. Y., et al. (2024). From the Oral Cavity to the Spine: Prevalence of Oral Cavity Infections in Patients with Pyogenic Spinal Infection. Journal of clinical medicine, 13(4), 1040. https://doi.org/10.3390/jcm13041040. DOI: https://doi.org/10.3390/jcm13041040
Krzyściak, W., Jurczak, A., Kościelniak, D., Bystrowska, B., & Skalniak, A. (2014). The virulence of Streptococcus mutans and the ability to form biofilms. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 33(4), 499–515. https://doi.org/10.1007/s10096-013-1993-7. DOI: https://doi.org/10.1007/s10096-013-1993-7
Lucas, B. N., Nora, D. M. F., Boeira, C. P., Verruck, S., & Rosa, S. C. (2022). Determination of total phenolic compounds in plant extracts via Folin-Ciocalteu' s methodadapted to the usage of digital images. Food Science and Technology, 42, 1–6. DOI: https://doi.org/10.1590/fst.35122
Nadar, S., Khan, T., Patching, S. G., & Omri, A. (2022). Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms, 10(2), 303. https://doi.org/10.3390/microorganisms10020303. DOI: https://doi.org/10.3390/microorganisms10020303
Nassima, B., Nassima, B., & Riadh, K. (2019). Antimicrobial and antibiofilm activities of phenolic compounds extracted from Populus nigra and Populus alba buds (Algeria). Brazilian Journal of Pharmaceutical Sciences, 55, 1–10. DOI: https://doi.org/10.1590/s2175-97902019000218114
Nomura, R., Otsugu, M., Hamada, M., Matayoshi, S., Teramoto, N., et al. (2020). Potential involvement of Streptococcus mutans possessing collagen binding protein Cnm in infective endocarditis. Scientific reports, 10(1), 19118. https://doi.org/10.1038/s41598-020-75933-6. DOI: https://doi.org/10.1038/s41598-020-75933-6
Rouamba, A., Badini, D., Compaoré, E., Ouédraogo, V., & Kiendrebeogo, M. (2024a). Lippia multiflora Leaves Extracts Enhance Cefotaxime Bactericidal Effects and Quench the Biofilm Formation in Methicillin-Resistant Staphylococcus aureus ATCC 43300. Avicenna journal of medical biotechnology, 16(3), 193–199. https://doi.org/10.18502/ajmb.v16i3.15746. DOI: https://doi.org/10.18502/ajmb.v16i3.15746
Rouamba, A., Compaoré, E., Kontogom, M., Zoungrana, Y., Ouedraogo, V., & Kiendrebeogo, M. (2024b). Essential oil of Lippia multiflora Moldenke Flowers Quenches Pseudomonas aeruginosa PAO1 Biofilm Formation and Motilities. Journal of Pure and Applied Microbiology, 18(2), 1043–1050. DOI: https://doi.org/10.22207/JPAM.18.2.19
Roy, R. D., & Gupta, S. D. (2022). A novel method for early detection of MIC value – Broth dilution using indicator solution versus agar dilution : an original article. Journal of Research in Clinical Medicine, 10(27), 1–5. DOI: https://doi.org/10.34172/jrcm.2022.027
Septya, E. N., Amelia, R., & Suharyani, I. (2023). Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Extract of NADES Nail Henna Leaves Against Bacillus Cereus Bacteria. Journal of Health Science and Policy, 1(1), 1–8. https://doi.org/10.56855/jhsp.v1i1.168.
Sharma, S., Mohler, J., Mahajan, S. D., Schwartz, S. A., Bruggemann, L., & Aalinkeel, R. (2023). Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms, 11(6), 1614. https://doi.org/10.3390/microorganisms11061614. DOI: https://doi.org/10.3390/microorganisms11061614
Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., & Bezirtzoglou, E. (2021). Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms, 9(10), 2041. https://doi.org/10.3390/microorganisms9102041. DOI: https://doi.org/10.3390/microorganisms9102041
Waditzer, M., & Bucar, F. (2021). Flavonoids as Inhibitors of Bacterial Efflux Pumps. Molecules (Basel, Switzerland), 26(22), 6904. https://doi.org/10.3390/molecules26226904. DOI: https://doi.org/10.3390/molecules26226904
Wen, Z. T., Liao, S., Bitoun, J. P., De, A., Jorgensen, A., Feng, S., et al. (2017). Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium. Frontiers in cellular and infection microbiology, 7, 524. https://doi.org/10.3389/fcimb.2017.00524. DOI: https://doi.org/10.3389/fcimb.2017.00524
Yamin, R., Mistriyani, S., Ihsan, S., Armadany, F. I., Sahumena, M. H., &Fatimah, W. O. N. (2021). Determination of total phenolic and flavonoid contents of jackfruitpeel and in vitro antiradical test. Food Research, 5(1), 84–90. DOI: https://doi.org/10.26656/fr.2017.5(1).350
Youssefi, M. A., & Afroughi, S. (2020). Prevalence and Associated Factors of Dental Caries in Primary Schoolchildren: An Iranian Setting. International journal of dentistry, 2020, 8731486. https://doi.org/10.1155/2020/8731486. DOI: https://doi.org/10.1155/2020/8731486
Zhu, Y., Wang, Y., Zhang, S., Li, J., Li, X., Ying, Y., Yuan, J., Chen, K., Deng, S., & Wang, Q. (2023). Association of polymicrobial interactions with dental caries development and prevention. Frontiers in microbiology, 14, 1162380. https://doi.org/10.3389/fmicb.2023.1162380. DOI: https://doi.org/10.3389/fmicb.2023.1162380
Zubair, M., Ashraf, M., Raza, M., Mustafa, B., &Ahsan, A. (2017). Formation and Significance of Bacterial Biofilms. International Journal of Current Microbiology and Applied Sciences, 3(12), 917–923.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.