Introgressing photoperiod/thermo-sensitive genic male sterile gene into Basmati 370 rice

Authors

DOI:

https://doi.org/10.18006/2024.12(5).756.769

Keywords:

Basmati rice, fgr gene, Gene introgression, Pollen sterility, P/TGMS rice lines

Abstract

The emasculation of male gametes in pollen-recipient parents among self-pollinated crops (rice) is key to producing quality hybrid rice seeds. One of the emasculation tools in rice breeding is the photoperiod-thermo sensitive genic male sterility (P/TGMS) method, which ultimately requires long daylight length and high-temperature growth conditions to induce male gametes sterility. Using the P/TGMS method to produce hybrid Basmati rice seeds has been slow because no commercial line has been developed. Crossing the Basmati rice line with a non-aromatic rice line produces F1 with non-basmati quality traits. This study aimed to introgress the p/tgms12-1 gene into Basmati 370 by treating P/TGMS lines (IR-7327-2376-157S and IR-75589-31-27833S) with daytime temperatures (>33ºC) under a polythene greenhouse to emasculate pollen and cross-pollinating them with Basmati 370. Marker-assisted backcrossing was used to develop the BC1F2 Basmati breeding lines evaluated for pollen sterility and agro-morphological traits. Pollen sterility was tested by staining with 1% iodine potassium-iodide solution (I2KI), in which fertile and sterile pollen grains were stained with blue-black and yellow-pink dyes, respectively. The acquisition of near-complete pollen sterility among female parents is a manifestation of the greenhouse temperatures effectively emasculating pollen in P/TGMS parents and BC1F2. Analysis of variance on agro-morphological data showed significantly better agro-morphological traits in BC1F2 than the parents and significantly higher pollen sterility in P/TGMS lines than Basmati 370 (P≤0.05). The presence of the fgr gene in BC1F2 lines was confirmed using SSR markers, and the hybrids had both homozygous aromatic and heterozygous non-aromatic traits, the successful development of BC1F2 with p/tgms12-1 and fgr genes. The results obtained from this study are a major milestone towards improving Basmati rice yields in Kenya using hybrid seeds. 

Author Biographies

Beatrice Nyarangi Nyankemba, Department of Water and Agricultural Resource Management, University of Embu, Embu P.O. Box 6-60100, Embu, Kenya

Department of Water and Agricultural Resource Management, University of Embu, Embu P.O. Box 6-60100, Embu, Kenya

Edith Esther Arunga, Department of Water and Agricultural Resource Management, University of Embu, Embu P.O. Box 6-60100, Embu, Kenya

Department of Water and Agricultural Resource Management, University of Embu, Embu P.O. Box 6-60100, Embu, Kenya

Paul Njiruh Nthakanio, Department of Water and Agricultural Resource Management, University of Embu, Embu P.O. Box 6-60100, Embu, Kenya

Department of Water and Agricultural Resource Management, University of Embu, Embu P.O. Box 6-60100, Embu, Kenya

References

Abebrese, S. O., Dartey, P. K. A., Akromah, R., Gracen, V. E., Offei, S. K., & Danquah, E. Y. (2018). Genetics of anther indehiscence with exerted stigmas and its application in hybrid rice breeding. Journal of Crop Improvement, 32(4), 552-565. DOI: https://doi.org/10.1080/15427528.2018.1458675

Adiredjo, A. L., & Ardiarini, N. R. (2023). Genetic Purity Analysis Using Polymorphic SSR Markers in Rice Genotypes (Oryza sativa L.) and Their Confirmation for the Parental Lines. Plant breeding and biotechnology, 11(3), 220-224. DOI: https://doi.org/10.9787/PBB.2023.11.3.220

Ahmed, M. S., Siddique, F., Satti, A. M., Ullah, Z., & Hussain, I. (2020). Indigenization of hybrid rice development in Pakistan: Breeding prospects and approaches. Journal of Pure and Applied Agriculture, 5(4): 1 – 10.

Akhter, M., & Haider, Z. (2020). Basmati rice production and research in Pakistan. Sustainable Agriculture Reviews, 39, 119 – 136. DOI: https://doi.org/10.1007/978-3-030-38881-2_5

Ali, J., Paz, M. D., & Robiso, C. J. (2021). Advances in Two-Line Heterosis Breeding in Rice via the Temperature-Sensitive Genetic Male Sterility System. In Ali, J., Wani, S.H. (eds) Rice Improvement (pp. 99-145). Springer, Cham. https://doi.org/10.1007/978-3-030-66530-2_4. DOI: https://doi.org/10.1007/978-3-030-66530-2_4

Amist, N., & Singh, N. B. (2020). Male sterility system for hybrid rice breeding and seed production. In A. Roychoudhury (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering: Volume 2: Nutrient Biofortification and Herbicide and Biotic Stress Resistance in Rice (pp. 269-289). Springer, Singapore. https://doi.org/10.1007/978-981-15-5337-0_13 DOI: https://doi.org/10.1007/978-981-15-5337-0_13

Asante, M. D., Akromah, R., Darty, P. K., & Ofori, J. (2006). Inheritance of spikelet fertility in two rice crosses. Journal of Science and Technology (Ghana), 26(3), 40 – 45. DOI: https://doi.org/10.4314/just.v26i3.33003

Ashraf, M. F., Peng, G., Liu, Z., Noman, A., Alamri, S., et al. (2020). Molecular control and application of male fertility for two-line hybrid rice breeding. International Journal of Molecular Sciences, 21(21), 7868. DOI: https://doi.org/10.3390/ijms21217868

Atera, E. A., Onyancha, F. N., & Majiwa, E. B. (2018). Production and marketing of rice in Kenya: Challenges and opportunities. Journal of Development and Agricultural Economics, 10(3), 64 – 70. DOI: https://doi.org/10.5897/JDAE2017.0881

Bradbury, L. M., Fitzgerald, T. L., Henry, R. J., Jin, Q., & Waters, D. L. (2005). The gene for fragrance in rice. Plant Biotechnology Journal, 3(3), 363 – 370. DOI: https://doi.org/10.1111/j.1467-7652.2005.00131.x

Budhlakoti, V., & Baskheti, D. C. (2021). Studies on heterosis for grain yield and yield component traits in basmati rice (Oryza sativa L). Journal of Pharmacognosy and Phytochemistry, 10(1), 1920-1925.

Carsono, N., Tambunan, R. R., Sari, S., & Wicaksana, N. (2023). Molecular and phenotypic markers for pyramiding multiple traits in rice. Open Agriculture, 8(1), 20220187. DOI: https://doi.org/10.1515/opag-2022-0187

Chang, Z., Chen, Z., Wang, N., Xie, G., Lu, J., et al. (2016). Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proceedings of the National Academy of Sciences, 113(49), 14145 – 14150. DOI: https://doi.org/10.1073/pnas.1613792113

Chen, L., Zhao, Z., Liu, X., Liu, L., Jiang, L., et al. (2011). Marker-assisted breeding of a photoperiod-sensitive male sterile japonica rice with high cross-compatibility with indica rice. Molecular Breeding, 27, 247 – 258. DOI: https://doi.org/10.1007/s11032-010-9427-z

Chukwu, S. C., Rafii, M. Y., Ramlee, S. I., Ismail, S. I., Oladosu, Y., Okporie, E., & Jalloh, M. (2019). Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.). Biotechnology & Biotechnological Equipment, 33(1), 440-455. DOI: https://doi.org/10.1080/13102818.2019.1584054

Cordero-Lara, K. I. (2020). Temperate japonica rice (Oryza sativa L.) breeding: History, present and future challenges. Chilean journal of agricultural research, 80(2), 303-314. DOI: https://doi.org/10.4067/S0718-58392020000200303

Dar, M. H., Bano, D. A., Waza, S. A., Zaidi, N. W., Majid, A., et al. (2021). Abiotic stress tolerance-progress and pathways of sustainable rice production. Sustainability, 13(4), 2078. DOI: https://doi.org/10.3390/su13042078

Denis, B. E. (2020). Assessment of yield, grain quality and combining ability of selected rice cultivars in Kenya (Doctoral dissertation, University of Nairobi, Kenya).

Denis, B. E. J., Ngugi, K., & Kimani, J. M. (2022). Genotypic Performance of Kenyan Rice Cultivars for Grain Yield and Quality. Journal of Agricultural Studies, 10(4), 201 – 217. DOI: https://doi.org/10.5296/jas.v10i4.20372

Dutta, C., Nath, D. J., & Phyllei, D. (2022). Aromatic rice and factors affecting aroma in rice. International Journal of Environment and Climate Change, 12(11), 1773-1779. DOI: https://doi.org/10.9734/ijecc/2022/v12i1131162

El-Mowafi, H. F., AlKahtani, M. D., El-Hity, M. A., Reda, A. M., Al Husnain, L., El-Degwy, E. S., & Attia, K. A. (2021). Characterization of fertility alteration and marker validation for male sterility genes in novel PTGMS lines hybrid rice. Saudi Journal of Biological Sciences, 28(8), 4109 – 411. DOI: https://doi.org/10.1016/j.sjbs.2021.04.058

Fang, X., Sun, Y., Li, J., Li, M., & Zhang, C. (2023). Male sterility and hybrid breeding in soybean. Molecular Breeding, 43(6), 47. DOI: https://doi.org/10.1007/s11032-023-01390-4

Gaballah, M. M., Attia, K. A., Ghoneim, A. M., Khan, N., El-Ezz, A. F., Yang, B., & Al-Doss, A. A. (2022). Assessment of genetic parameters and gene action associated with heterosis for enhancing yield characters in novel hybrid rice parental lines. Plants, 11(3), 266. DOI: https://doi.org/10.3390/plants11030266

Hamad, H. S., Ghazy, M. I., Bleih, E. M., Gewaily, E. E., Gaballah, M. M., et al. (2022). Evaluation of advanced mutant restorer lines for enhancing outcrossing rate and hybrid seed production of diverse rice cytoplasmic male sterile lines. Agronomy, 12(11), 2875. DOI: https://doi.org/10.3390/agronomy12112875

Heredia, M. C., Kant, J., Prodhan, M. A., Dixit, S., & Wissuwa, M. (2022). Breeding rice for a changing climate by improving adaptations to water saving technologies. Theoretical and Applied Genetics, 135(1), 17-33. DOI: https://doi.org/10.1007/s00122-021-03899-8

Hu, Q., Wang, W., Lu, Q., Huang, J., Peng, S., & Cui, K. (2021). Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage. BMC Plant Biology, 21, 1-17. DOI: https://doi.org/10.1186/s12870-021-03209-w

Hu, X., Lu, L., Guo, Z., & Zhu, Z. (2020). Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends in food science & technology, 97, 136-146. DOI: https://doi.org/10.1016/j.tifs.2020.01.003

Hussain, A., Arshad, K., Abdullah, J., Aslam, A., Azam, A., et al. (2021). A Comprehensive Review on Breeding Technologies and Selection Methods of Self-pollinated and Cross-Pollinated Crops. Asian Journal of Biotechnology and Genetic Engineering, 4(3), 35-47.

Li, J., Luo, X., & Zhou, K. (2024). Research and development of hybrid rice in China. Plant Breeding, 143(1), 96-104. DOI: https://doi.org/10.1111/pbr.13134

Liu, D., Shi, J., Liang, W., & Zhang, D. (2023). Molecular mechanisms underlying plant environment-sensitive genic male sterility and fertility restoration. Seed Biology, 2(1), 13 doi: 10.48130/SeedBio-2023-0013. DOI: https://doi.org/10.48130/SeedBio-2023-0013

Luo, H., Zhang, T., Zheng, A., He, L., Lai, R., et al. (2020). Exogenous pyrroline induces regulation in 2-acetyl-1-pyrroline (2-AP) biosynthesis and quality characters in fragrant rice (Oryza sativa L.). Scientific Reports, 10(1), 13971. DOI: https://doi.org/10.1038/s41598-020-70984-1

Mahuku, G. S. (2004). A simple extraction method suitable for PCR-based analysis of plant, fungal, and bacterial DNA. Plant Molecular Biology Reporter, 22, 71 – 81. DOI: https://doi.org/10.1007/BF02773351

Ng’endo, M., Kinyua, M., Chebet, L., Mutiga, S., Ndung’u, J., et al. (2022). The importance of market signals in crop varietal development: lessons from Komboka rice variety. CABI Agriculture and Bioscience, 3(1), 1 – 21. DOI: https://doi.org/10.1186/s43170-022-00122-6

Njau, K. S. (2017). Production of hybrid rice using environment sensitive genic male sterile (EGMS) and basmati rice lines (Doctoral dissertation, Kenyatta University, Nairobi, Kenya).

Njiruh, N. P., Kanya, J. I., Kimani, J. M., & Wajogu, R. (2013). Production of Hybrid Basmati Rice in Kenya: Progress and Challenges. International Journal of Innovations in Bio-Sciences, 3 (4), 115-124.

Nthakanio, P. N., & Kariuki, S. N. (2019). Production of Hybrid Rice seeds using environment sensitive genic male sterile (EGMS) and basmati rice lines in Kenya. BioRxiv, 755306. DOI: https://doi.org/10.1101/755306

Peng, G., Liu, Z., Zhuang, C., & Zhou, H. (2023). Environment‐sensitive genic male sterility in rice and other plants. Plant, Cell & Environment, 46(4), 1120-1142. DOI: https://doi.org/10.1111/pce.14503

Prajapati, M. R., Bala, M., Patel, V. P., Patel, R. K., Sushmitha, U. S., Kyada, A. D., & Patel, D. P. (2022). Analysis of genetic variability and correlation for yield and its attributing traits in F2 population of rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 13(3), 983-990. DOI: https://doi.org/10.37992/2022.1303.127

Prasanna, G. S., Parveen, S. S., Muraleedharan, A., & Joshi, J. L. (2024). Heterosis Analysis for Yield and Resistance to Yellow Stem Borer (Scirpophaga incertulas Wlk.) in F1 Progenies Derived from Six Crosses of Rice (Oryza sativa L.). Environment and Ecology, 42(3B), 1431-1439. DOI: https://doi.org/10.60151/envec/IXWT5575

Prodhan, Z. H., & Qingyao, S. H. U. (2020). Rice aroma: A natural gift comes with price and the way forward. Rice Science, 27(2), 86-100. DOI: https://doi.org/10.1016/j.rsci.2020.01.001

Rao, J., Wang, X., Cai, Z., Fan, Y., & Yang, J. (2021). Genetic analysis of s5-interacting genes regulating hybrid sterility in rice. Rice, 14, 1-9. DOI: https://doi.org/10.1186/s12284-020-00452-x

Roy, S., Banerjee, A., Basak, N., Kumar, J., & Mandal, N. P. (2020). Aromatic rice. The future of rice demand: Quality beyond productivity, 251-282. DOI: https://doi.org/10.1007/978-3-030-37510-2_11. DOI: https://doi.org/10.1007/978-3-030-37510-2_11

Sreedhar, S., & Reddy, R. U. (2019). Association studies for yield and its traits in rice (Oryza sativa L.) genotypes. International Journal of Current Microbiology and Applied Sciences, 8(1), 2337 – 2342. DOI: https://doi.org/10.20546/ijcmas.2019.801.245

Swaminathan, M. (2021). Progress and Prospects of Two Line Rice Breeding in India. In M. Huang (Ed.) Integrative Advances in Rice Research. Intechopen publication. DOI: 10.5772/intechopen.99545 DOI: https://doi.org/10.5772/intechopen.99545

Tongmark, K., Chakhonkaen, S., Sangarwut, N., Wasinanon, T., Panyawut, N., Ditthab, K., & Muangprom, A. (2021). Development of high yielding two-line hybrid rice in Thailand. Science Asia, 47(2), 153-161. doi: 10.2306/scienceasia1513-1874.2021.019. DOI: https://doi.org/10.2306/scienceasia1513-1874.2021.019

Uyeh, D. D., Asem-Hiablie, S., Park, T., Kim, K., Mikhaylov, A., Woo, S., & Ha, Y. (2021). Could Japonica Rice Be an Alternative Variety for Increased Global Food Security and Climate Change Mitigation? Foods (Basel, Switzerland), 10(8), 1869 – 1869. DOI: https://doi.org/10.3390/foods10081869

Varatharajan, N., Sekaran, D. C., Murugan, K., & Chockalingam, V. (2021). Rice aroma: Biochemical, genetics and molecular

aspects and its extraction and quantification methods. In M. Huang (Ed.) Integrative Advances in Rice Research, 33. DOI: 10.5772/intechopen.98913. DOI: https://doi.org/10.5772/intechopen.98913

Verma, D. K., & Srivastav, P. P. (2022). Extraction, identification and quantification methods of rice aroma compounds with emphasis on 2-acetyl-1-pyrroline (2-AP) and its relationship with rice quality: A comprehensive review. Food Reviews International, 38(2), 111-162. DOI: https://doi.org/10.1080/87559129.2020.1720231

Vishvapriya, M., Binodh, A. K., Manonmani, S., Kumaresan, D., Senthil, A., & Kumar, G. S. (2023). Genetics of sterility behaviour in Thermo sensitive genic male sterility system in rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 14(3), 1105 – 1110. DOI: https://doi.org/10.37992/2023.1403.126

Wang, H., Xiong, R., Zhou, Y., Tan, X., Pan, X., et al. (2022). Grain yield improvement in high-quality rice varieties released in southern China from 2007 to 2017. Frontiers in Sustainable Food Systems, 6, 986655. DOI: https://doi.org/10.3389/fsufs.2022.986655

Yılmaz, H., & Njora, B. (2021). Analysis of the impact of agricultural policies on food security in Kenya. Eurasian Journal of Agricultural Research, 5(2), 66-83.

Zheng, X., Wei, F., Cheng, C., & Qian, Q. (2024). A historical review of hybrid rice breeding. Journal of Integrative Plant Biology, 66(3), 532-545. DOI: https://doi.org/10.1111/jipb.13598

Zhou, H., Liu, Q., Li, J., Jiang, D., Zhou, L., et al. (2012). Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell research, 22(4), 649 – 660. DOI: https://doi.org/10.1038/cr.2012.28

Downloads

Published

2024-11-29

How to Cite

Nyankemba, B. N., Arunga, E. E., & Nthakanio, P. N. (2024). Introgressing photoperiod/thermo-sensitive genic male sterile gene into Basmati 370 rice. Journal of Experimental Biology and Agricultural Sciences, 12(5), 756–769. https://doi.org/10.18006/2024.12(5).756.769

Issue

Section

RESEARCH ARTICLES

Categories