Antibiotic-Induced Changes in Efflux Transporter Expression: A Key Factor in Pseudomonas aeruginosa Biofilm Resistance
DOI:
https://doi.org/10.18006/2024.12(2).274.283Keywords:
Antimicrobial Resistance, Biofilm, Pseudomonas aeruginosa, Ceftazidime, Ofloxacin, Tobramycin, Antibiotic Sensitivity, Efflux transportersAbstract
Listed by WHO as an antibiotic-resistant priority pathogen, Pseudomonas aeruginosa (P.A.) is a serious threat in nosocomial infections. Its high antibiotic resistance is attributed to major mechanisms that can be categorized into intrinsic, acquired, and adaptive resistance. This study tests the ability of three commonly used antibiotics to inhibit new biofilm formation and eradicate mature biofilm growth, as well as investigate changes in the expression levels of selected genes coding for multidrug efflux pumps in P.A. planktonic cells and biofilms before and after treatment with antibiotics to provide a conceptual estimate of the activity of the efflux transporters that work to extrude antibiotics leading to a reduction in their effectiveness. Antimicrobial susceptibility testing was conducted with Ofloxacin (OFLX), Tobramycin (TOB), and Ceftazidime (CAZ) to determine Mean Inhibitory Concentration (MIC) and Mean Bactericidal Concentration (MBC) using microtiter plate-based biofilm assay and spectrophotometric quantification. Extraction of total RNA was performed from planktonic cultures, inhibition phase, and eradication phase P.A. biofilms. Real-time quantitative reverse transcriptase PCR was utilized to analyze the changes in expression of the mexAB, mexXY, and oprM genes. Three (3) antibiotics that have proven to show less resistance are OFLX, TOB, and CAZ when tested against overnight cultures of P.A. strain PA01. Results showed that OFLX is best for bactericidal properties, which is also supported by the viability assay data obtained from Propidium Iodide staining. Our study showed that the PAO1 strain is susceptible to OFLX for both inhibition and eradication of mature biofilms. TOB was most effective at higher concentrations in the eradication phase.
References
Alav, I., Sutton, J. M., & Rahman, K. M. (2018). Role of bacterial efflux pumps in biofilm formation. Journal of Antimicrobial Chemotherapy, 73(8), 2003-2020. doi:10.1093/jac/dky042 DOI: https://doi.org/10.1093/jac/dky042
Bhandari, S., Adhikari, S., Karki, D., Chand, A. B., Sapkota, S., et al. (2022). Antibiotic Resistance, Biofilm Formation and Detection of mexA/mexB Efflux-Pump Genes Among Clinical Isolates of Pseudomonas aeruginosa in a Tertiary Care Hospital, Nepal. Frontiers in Tropical Diseases, 17(2), 2021. https://doi.org/10.3389/fitd.2021.810863 DOI: https://doi.org/10.3389/fitd.2021.810863
Cavalieri, S. J. (2009). Manual of Antimicrobial Susceptibility Testing. United States: American Society for Microbiology.
Goli, H. R., Nahaei, M. R., Rezaee, M. A., Hasani, A., Kafil, H. S., et al. (2018). Role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and intensive care unit isolates of pseudomonas aeruginosa. Journal of Infection and Public Health, 11(3), 364-372. doi:10.1016/j.jiph.2017.09.016 DOI: https://doi.org/10.1016/j.jiph.2017.09.016
Hassuna, N. A., Darwish, M. K., Sayed, M., & Ibrahem, R. A. (2020). Molecular epidemiology and mechanisms of high-level resistance to meropenem and imipenem in Pseudomonas aeruginosa. Infection and Drug Resistance, 13, 285-293. doi:10.2147/IDR.S233808 DOI: https://doi.org/10.2147/IDR.S233808
Kishk, R.M., Abdalla, M.O., Hashish, A.A., Nemr, N.A., El Nahhas, N., et al. (2020). Efflux MexAB-Mediated Resistance in P. aeruginosa Isolated from Patients with Healthcare Associated Infections. Pathogens 9(6), 471. https://doi.org/10.3390/ pathogens9060471 DOI: https://doi.org/10.3390/pathogens9060471
Lorusso, A.B., Carrara, J.A., Barroso, C.D.N., Tuon, F.F., & Faoro, H. (2022). Role of Efflux Pumps on
Antimicrobial Resistance in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 23, 15779. https://doi.org/10.3390/ijms232415779 DOI: https://doi.org/10.3390/ijms232415779
Lee, J., & Zhang, L. (2014). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & Cell, 6(1), 26-41. doi:10.1007/s13238-014-0100-x DOI: https://doi.org/10.1007/s13238-014-0100-x
Li, X., Plésiat, P., & Nikaido, H. (2015). The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clinical Microbiology Reviews, 28(2), 337-418. doi:10.1128/CMR.00117-14 DOI: https://doi.org/10.1128/CMR.00117-14
Lund-Palau, H., Turnbull, A. R., Bush, A., Bardin, E., Cameron, L., et al. (2016). Pseudomonas aeruginosa infection in cystic fibrosis: Pathophysiological mechanisms and therapeutic approaches Informa U.K. Limited. doi:10.1080/17476348.2016.1177460 DOI: https://doi.org/10.1080/17476348.2016.1177460
Mangiaterra, G., Cedraro, N., Vaiasicca, S., Citterio, B., Galeazzi, R., et al. (2020). Role of Tobramycin in the Induction and Maintenance of Viable but Non-Culturable Pseudomonas aeruginosa in an In Vitro Biofilm Model. Antibiotics, 9(7), 399. https://doi.org/10.3390/antibiotics9070399. DOI: https://doi.org/10.3390/antibiotics9070399
Marquez, B. (2005). Bacterial efflux systems and efflux pumps inhibitors. Biochimie, 87(12), 1137-1147. doi:10.1016/j.biochi.2005.04.012 DOI: https://doi.org/10.1016/j.biochi.2005.04.012
Masuda, N., Sakagawa, E., Ohya, S., Gotoh, N., Tsujimoto, H., & Nishino, T. (2000). Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 44(9), 2242-2246. doi:10.1128/AAC.44.9.2242-2246.2000 DOI: https://doi.org/10.1128/AAC.44.9.2242-2246.2000
Morita, Y., Tomida, J., & Kawamura, Y. (2012). MexXY multidrug efflux system of Pseudomonas aeruginosa. Frontiers in Microbiology, 3, 408. doi:10.3389/fmicb.2012.00408 DOI: https://doi.org/10.3389/fmicb.2012.00408
O'Toole G. A. (2011). Microtiter dish biofilm formation assay. Journal of visualized experiments, 47, 2437. https://doi.org/10.3791/2437 DOI: https://doi.org/10.3791/2437-v
Patel, D., Sen, P., Hlaing, Y., Boadu, M., Saadeh, B., & Basu, P. (2021). Antimicrobial Resistance in Pseudomonas aeruginosa Biofilms. Journal of Pure and Applied Microbiology,15(4):2520-2528. DOI: https://doi.org/10.22207/JPAM.15.4.79
Poole, K. (2011). Pseudomonas aeruginosa: Resistance to the max. Frontiers in Microbiology, 2, 65. doi:10.3389/fmicb.2011.00065 DOI: https://doi.org/10.3389/fmicb.2011.00065
Pourakbari, B., Yaslianifard, S., Yaslianifard, S., Mahmoudi, S., Keshavarz-Valian, S., & Mamishi, S. (2016). Evaluation of efflux pumps gene expression in resistant Pseudomonas aeruginosa isolates in an Iranian referral hospital. Iranian journal of microbiology, 8(4), 249–256.
Qu, L., She, P., Wang, Y., Liu, F., Zhang, D., et al. (2016). Effects of norspermidine on pseudomonas aeruginosa biofilm formation and eradication. Microbiology Open (Weinheim), 5(3), 402-412. DOI: https://doi.org/10.1002/mbo3.338
Rutherford, S. T., & Bassler, B. L. (2012). Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harbor Perspectives in Medicine, 2(11), a012427. DOI: https://doi.org/10.1101/cshperspect.a012427
Smith, R. S., & Iglewski, B. H. (2003). Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. The Journal of Clinical Investigation, 112(10), 1460-1465. doi:10.1172/JCI200320364 DOI: https://doi.org/10.1172/JCI200320364
Sousa, A. M., & Pereira, M. O. (2014). Pseudomonas aeruginosa diversification during infection development in cystic fibrosis Lungs—A review. Pathogens (Basel), 3(3), 680-703. DOI: https://doi.org/10.3390/pathogens3030680
Walker, J., & Moore, G. (2014). Pseudomonas aeruginosa in hospital water systems: Biofilms, guidelines, and practicalities. The Journal of Hospital Infection, 89(4), 324-327. doi:10.1016/j.jhin.2014.11.019 DOI: https://doi.org/10.1016/j.jhin.2014.11.019
World health organization. (2017). Retrieved from https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
Zakhour, J., Sharara, S.L., Hindy, J.R., Haddad, S.F., & Kanj, S.S. (2022). Antimicrobial Treatment of Pseudomonas aeruginosa Severe Sepsis. Antibiotics, 11(10), 1432. DOI: https://doi.org/10.3390/antibiotics11101432
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.