Biodegradation of the Azo Dye Airedale Yellow CHD: Understanding using residuals
DOI:
https://doi.org/10.18006/2022.10(2).430.439Keywords:
Airedale Yellow CHD, Minitab, Biodegradation, Scatter, ResidualsAbstract
Textile industries are heavy users of water and also produce lots of contaminated effluents. The main contaminants are azo dyes. Hence, the effluents are to be treated before leaving in the environment. In this study, the azo dye Airedale Yellow CHD was biodegraded using two bacteria Thalassospira frigidphilosprofundus (NCIM no 5438) and Erwinia chrysanthemi Burkholder (NCIM no 5213) in shaking conical flasks. Effect of Various parameters like pH, temperature, agitation, and concentration of dye solution on its decolorization was investigated. The biodegradation was statistically worked out using MINITAB software for the ANOVA. The residual plots along with the scatter plots for the decolorization of Airedale Yellow CHD using T. frigidphilosprofundus and E. chrysanthemi Burkholder are also obtained and included in this work. The maximum percent removal of the azo dye was obtained by using T. frigidphilosprofundus (77.41%) whereas it was reported at 74.64% by using E. chrysanthemi Burkholder. The obtained results formed a good fit according to the obtained normal residual plot which can conclude that the findings of the study are accurate and satisfactory.
References
Adapa, V. (2018). Enhancement of cold active polygalacturonase productivity in a novel marine psychrophile Thalassospira frigidphilosprofundus s3ba12. Doctoral thesis, Acharya Nagarjuna University, Guntur, Telangana, India
Atalay, S., & Ersöz, G. (2016). Novel Catalysts in Advanced Oxidation of Organic Pollutants. Springer, New York, pp. 23–34 DOI: https://doi.org/10.1007/978-3-319-28950-2_3
Barker, T., & Westfall, J. (2022). Correlation Analysis with Scatter Plots. In: Pro Data Visualization Using R and JavaScript. Apress, Berkeley, CA. https://link.springer.com/chapter/10.1007/978-1-4842-7202-2_8 DOI: https://doi.org/10.1007/978-1-4842-7202-2_8
Bharathiraja, B., Aberna Ebenezer Selvakumari, I., Iyyappan, J., & Varjani, S. (2019). Itaconic acid: an effective sorbent for removal of pollutants from dye industry effluents. Current Opinion in Environmental Science & Health, 12, 6-17 DOI: https://doi.org/10.1016/j.coesh.2019.07.004
Chang, J. S., Kuo, T. S., Chao, Y. P., Ho, J. Y., & Lin, P. J. (2000). Azo dye decolorization with a mutant Escherichia coli strain. Biotechnology Letters, 22(9), 807–812 DOI: https://doi.org/10.1023/A:1005624707777
Dos Santos, A. B., Cervantes, F. J., & van Lier, J. B. (2007). Current technologies for decolorisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technology, 98(12), 2369–2385 DOI: https://doi.org/10.1016/j.biortech.2006.11.013
Garg, N., Garg, A., & Mukherji, S. (2020). Eco-friendly decolorization and degradation ofreactive yellow 145 textile dye by Pseudomonas aeruginosa and Thiosphaera pantotropha. Journal of Environmental Management, 110383. 263(March) DOI: https://doi.org/10.1016/j.jenvman.2020.110383
Hassan, M. M., & Carr, C. M. (2018). A critical review on recent advancements of the removalof reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere, 209, 201–219 DOI: https://doi.org/10.1016/j.chemosphere.2018.06.043
Hema. N., & Suresha, S. (2014). Bioremediation of Textile Dye effluent by Shewanella Putrefaciens. International Journal of Pharmacy and Biological Sciences, 4 (2), 109-116
Ibrahim, A., El-Fakharany, E.M., Abu-Serie, M.M., ElKady, M.F., Eltarahony, M. (2022). Methyl Orange Biodegradation by Immobilized Consortium Microspheres: Experimental Design Approach, Toxicity Study and Bioaugmentation Potential. Biology, 11, 76 DOI: https://doi.org/10.3390/biology11010076
Jain, M., Khan, S.A., Sharma, K., Jadhao, P.R., (2022). Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater. Bioresource Technology, 344(Pt B), 126305 DOI: https://doi.org/10.1016/j.biortech.2021.126305
Jin, X. C., Liu, G. Q., Xu, Z. H., & Tao, W. Y. (2007). Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Applied Microbiology and Biotechnology, 74(1), 239–243 DOI: https://doi.org/10.1007/s00253-006-0658-1
Kaneshiro, W. S., Burger, M., Vine, B. G., De Silva, A. S., & Alvarez, A. M. (2008). Characterization of Erwinia chrysanthemi from a bacterial heart rot of pineapple outbreak in Hawaii. Plant Disease, 92(10), 1444–1450 DOI: https://doi.org/10.1094/PDIS-92-10-1444
Melissa Denchak. (2018, May 14). Water Pollution: Everything You Need to Know. https://www.nrdc.org/stories/water-pollution-everything-you-need-know, accessed on 23 January 2022
Olawoye, B. (2016). A comprehensive handout on central composite design (ccd). Springer, New York
Patidar, D. & Sharma, S. (2021). Optimize of Process Parameters of EN31 on WEDM Machine. International Journal of Research Publication and Reviews, 2 (3), 174-179
Pulicherla, K. K., Kumar, P. S., Manideep, K., Rekha, V. P. B., Ghosh, M., & Rao, K. R. S. S. (2013). Statistical approach for the enhanced production of cold-active β-galactosidase from thalassospira frigidphilosprofundus: A novel marine psychrophile from deep waters of bay of bengal. Preparative Biochemistry and Biotechnology, 43(8), 766–780 DOI: https://doi.org/10.1080/10826068.2013.773341
Rai, H. S., Bhattacharyya, M. S., Singh, J., Bansal, T. K., Vats, P., & Banerjee, U. C. (2005). Removal of dyes from the effluent of textile and dyestuff manufacturing industry: A review of emerging techniques with reference to biological treatment. Critical Reviews in Environmental Science and Technology, 35(3), 219–238 DOI: https://doi.org/10.1080/10643380590917932
Said, K. A. M., Yakub, I., & Amin, M. A. M. (2015). Overview of Response Surface Methodology (RSM) in Extraction Process. Journal of Applied Science & Process Engineering, 2 (1), 279–287 DOI: https://doi.org/10.33736/jaspe.161.2015
Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes : A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138–157 DOI: https://doi.org/10.1016/j.jtice.2010.06.006
Sen, S.K., , Raut, S., Bandyopadhyay, P., Raut, S. (2016). Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews, 30 (3), 112-133 DOI: https://doi.org/10.1016/j.fbr.2016.06.003
Stolz, A. (2001). Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiology and Biotechnology, 56(1–2), 69–80 DOI: https://doi.org/10.1007/s002530100686
Subramani M R. (2020, May 4). Textile Manufacturers Face Three Problems In Cashing In On Global Anti-Chinese Sentiments Post-Covid-19. https://swarajyamag.com/business/textile-manufacturers-face-three-problems-in-cashing-in-on-global-anti-chinese-sentiments-post-covid-19, accessed on 23 January 2022
Van Der Zee F.P., & Villaverde, S. (2005). Combined anaerobic–aerobic treatment of azo dyes-A short review of bioreactor studies. Water Research, 39, 1425-1440 DOI: https://doi.org/10.1016/j.watres.2005.03.007
Varjani, S., Rakholiya, P., Ng, H.Y., You, S., Teixeira, J.A. (2020). Microbial degradation of dyes: An overview. Bioresource DOI: https://doi.org/10.1016/j.biortech.2020.123728
Technology, 314, 123728
World Dye Variety (2012, June 28). Dye/World dye variety. http://www.worlddyevariety.com/direct-dyes/direct-yellow-12.html
World Trade Statistical Review. (2019). World Trade Statistical Review. https://www.wto.org/english/res_e/statis_e/wts2019_e/ wts2019_e.pdf
World Trade Statistical Review. (2020). World Trade Statistical Review. https://www.wto.org/english/res_e/statis_e/wts2020_e/ wts2020_e.pdf
World Trade Statistical Review. (2021). World Trade Statistical Review. https://www.wto.org/english/res_e/statis_e/wts2021_e/ wts2021_e.pdf
Downloads
Published
How to Cite
License
Copyright (c) 2022 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.