Plant growth promotion activities of Bacillus spp. isolated from Jakrem hot water spring of Meghalaya, North East India
DOI:
https://doi.org/10.18006/2024.12(3).335.353Keywords:
Bacillus spp., Hot spring, Hydrolytic enzymes, IAA production, Growth promotionAbstract
The study aims to investigate plant growth promotion (PGP) activities of thermophilic bacteria isolated from the Jakrem hot spring in Meghalaya, North-East India, and determine their effect on Brassica juncea's growth. The bacteria were isolated by a culture-dependent approach following a serial dilution method in a nutrient agar medium. All the isolates were determined for PGP attributes such as indole acetic acid, phosphate solubilization, hydrolytic enzymes, and siderophore production. The potent bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis. Altogether, 53 bacterial isolates were obtained, most belonging to the genus Bacillus. Of the total isolates, 37.7% exhibited both PGP and hydrolytic enzyme activities. Three isolates, namely JAB1, JAB8, and JAB100, showed promising PGP and were identified as Bacillus velezensis, B. proteolyticus, and Bacillus sp., respectively. The PGP attributes of these isolates were determined in vivo on B. juncea, and their effects were measured in terms of shoot and root length biomass and biochemical contents. It was observed that combined inoculation of all three isolates significantly enhanced the growth and development of B. juncea, evident by increased shoot and root length, fresh and dry weight, and higher levels of protein, phenol, flavonoid, and chlorophyll content compared to the control. In conclusion, the study highlights the potential application of thermophilic Bacillus spp. from hot springs as bioinoculants to enhance crop productivity in sustainable agricultural practices.
References
Aanniz, T., Ouadghiri, M., Melloul, M., Swings, J., Elfahime, E., Ibijbijen, J., Ismaili, M., &Amar, M. (2015). Thermophilic bacteriain Moroccan hot springs, salt marshes and desert soils. Brazilian Journal of Microbiology, 46(2), 443–453. https://doi.org/10.1590/S1517-838246220140219 DOI: https://doi.org/10.1590/S1517-838246220140219
Adiguzel, A., Ozkan, H., Baris, O., Inan, K., Gulluce, M., & Sahin, F.(2009). Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. Journal of Microbiological Methods, 79, 321–328. https://doi.org/10.1016/ j.mimet.2009.09.026 DOI: https://doi.org/10.1016/j.mimet.2009.09.026
Agarwal, M., Singh, M. & Hussain, J. (2019). Assessment of groundwater quality with special emphasis on nitrate contamination in parts of Gautam Budh Nagar district, Uttar Pradesh, India. Acta Geochim, 38, 703–717. https://doi.org/10.1007/s11631-018-00311-z DOI: https://doi.org/10.1007/s11631-018-00311-z
Agarwal, H., Dowarah, B., Baruah, P.M., Bordoloi, K.S., Krishnatreya, D.B., & Agarwala, N. (2020). Endophytes from Gnetum gnemon L. can protect seedlings against the infection of phytopathogenic bacterium Ralstonia solanacearum as well as promote plant growth in tomato. Microbiological Research, 238, 126503. https://doi.org/10.1016/j.micres.2020.126503 DOI: https://doi.org/10.1016/j.micres.2020.126503
Ahmad, F., Ahmad, I., & Khan, M.S. (2005). Indole acetic acid production by the indigenous isolates of Azotobacter and Flourescent pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology, 29, 29–34.
Ali, B., Hafeez, A., Ahmad, S., Javed, M.A., Sumaira, Afridi, M.S., et al. (2022). Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. Frontiers in Plant Science, 13, 921668.https://doi.org/10.3389/fpls.2022.921668 DOI: https://doi.org/10.3389/fpls.2022.921668
APHA. (2017). Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA.
Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., & Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, 8, 63.https://doi.org/10.1186/1475-2859-8-63 DOI: https://doi.org/10.1186/1475-2859-8-63
Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15. DOI: https://doi.org/10.1104/pp.24.1.1
Badhai, J., Ghosh, T.S., & Das, S.K. (2015). Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India. Frontiers in Microbiology, 6, 1166. https://doi.org/10.3389/fmicb.2015.01166 DOI: https://doi.org/10.3389/fmicb.2015.01166
Beneduzi, A., Ambrosini, A., & Passaglia, L.M. (2012). Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4), 1044–1051. https://doi.org/10.1590/ s1415-47572012000600020 DOI: https://doi.org/10.1590/S1415-47572012000600020
Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84 (1), 11–18. DOI: https://doi.org/10.1007/s00253-009-2092-7
Brenner, D.J., Krieg, N.R., Staley, J.T., & Garrity, G.M. (2005). Bergey's Manual of Determinative Bacteriology, Volume 2, Parts A-C, Springer Science Business Media, Inc., New York, NY, USA, 2nd edition. https://doi.org/10.1007/0-387-28021-9 DOI: https://doi.org/10.1007/0-387-28021-9
Camele, I., Elshafie, H.S., Caputo, L., Sakr, S.H., & De Feo, V. (2019). Bacillus mojavensis: biofilm formation and biochemical investigation of its bioactive metabolites. Journal of Biological Research-Bollettino Della SocietàItaliana Di Biologia Sperimentale, 92, 39–45. https://doi.org/10.4081/jbr.2019.8296 DOI: https://doi.org/10.4081/jbr.2019.8296
Chan, C.S., Chan, K.G., Ee, R., Hong, K.W., Urbieta, M.S., Donati, E.R., Shamsir, M.S., & Goh, K.M. (2017). Effects of Physiochemical Factors on Prokaryotic Biodiversity in Malaysian Circumneutral Hot Springs. Frontiers in Microbiology, 8, 1252. DOI: https://doi.org/10.3389/fmicb.2017.01252
Chandrasekaran, M., Chun, S.C., Oh, J.W., Paramasivan, M., Saini, R.K., & Sahayarayan, J.J. (2019). Bacillus subtilis CBR05 for Tomato (Solanum lycopersicum) Fruits in South Korea as a Novel Plant Probiotic Bacterium (PPB): Implications from Total Phenolics, Flavonoids, and Carotenoids Content for Fruit Quality. Agronomy, 9, 838. https://doi.org/10.3390/agronomy9120838 DOI: https://doi.org/10.3390/agronomy9120838
Cui, W., He, P., Munir, S., He, P., Li, X., Li, Y., Wu, J., Wu, Y., Yang, L., & He, Y. (2019). Efficacy of plant growth promoting bacteria Bacillus amyloliquefaciens B9601-Y2 for biocontrol of southern corn leaf blight. Biological Control, 139, 104080. https://doi.org/10.1016/j. biocontrol.2019.104080 DOI: https://doi.org/10.1016/j.biocontrol.2019.104080
Das, S., Najar, I., Sherpa, M.T., &Thakur, N. (2016). Hot springs of Sikkim: biotechnological and sociological importance. In S. Das, I. Najar, M.T. Sherpa, N. Thakur (Eds.) Research on Biotechnology in India: some initiatives and accomplishments. New India Publishing Agency, New Delhi, 149–181.
Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J. P., & Raoult, D. (2000). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. Journal of clinical microbiology, 38(10), 3623-3630. DOI: https://doi.org/10.1128/JCM.38.10.3623-3630.2000
Dutta, S., Mishra, A.K., & Kumar, B.D. (2008). Induction of systemic resistance against Fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biology and Biochemistry, 40 (2), 452–461.https://doi.org/10.1016/ j.soilbio.2007.09.009. DOI: https://doi.org/10.1016/j.soilbio.2007.09.009
Erman, M., Kotan, R., Cakmakci, R., Cig, F., Karagoz, F., & Sezen, M. (2010). Effect of nitrogen fixing and phosphate-solubilizing Rhizobacteria isolated from Van Lake Basin on the growth and quality properties in wheat and sugar beet. Paper presented at: Proceedings of the Turkey IV Organic Farming Symposium, Erzurum, Turkey.
Fasina, K.A., Adesetan, T.O., Oseghale, F., Egberongbe, H.O., Aghughu, O.O., & Akpobome, F.A. (2020). Bacteriological and Phytochemical Assessment of Ficus asperifolia Linn. Infusion. BioMed Research International, 2020, 9762639. https://doi.org/10.1155/2020/9762639 DOI: https://doi.org/10.1155/2020/9762639
Fathima, A., & Rao, J.R. (2018). Is Cr(III) toxic to bacteria: toxicity studies using Bacillus subtilis and Escherichia coli as modelorganism. Archives of Microbiology, 200, 453–462. DOI: https://doi.org/10.1007/s00203-017-1444-4
Gamalero, E., & Glick, B.R. (2011). Mechanisms used by plant growth-promoting bacteria. In DK Maheshwari (Ed.) Bacteria in Agrobiology: Plant Nutrient Management (pp. 17–46). Springer: Berlin/Heidelberg, Germany. https://doi.org/10.1007/978-3-642-21061-7_2 DOI: https://doi.org/10.1007/978-3-642-21061-7_2
Goswami, M., & Deka, S. (2020). Isolation of a novel rhizobacteria having multiple plant growth promoting traits and antifungal activity against certain phytopathogens. Microbiological Research, 240, 1–17. https://doi.org/10.1016/j.micres.2020.126516 DOI: https://doi.org/10.1016/j.micres.2020.126516
Goteti, P.K., Emmanuel, L.D.A., Desai, S., & Shaik, M.H.A. (2013). Prospective zinc solubilizing bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). International Journal of Microbiology, 1-7.https://doi.org/10.1155/2013/869697 DOI: https://doi.org/10.1155/2013/869697
Glick, B.R. (2018). Soil microbes and sustainable agriculture. Pedosphere, 28, 167–169. DOI: https://doi.org/10.1016/S1002-0160(18)60020-7
Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K., &Singh, V. (2015). Plant growth-promoting rhizobacteria (PGPR): Current and prospects for the development of sustainable agriculture. Journal of Microbial & Biochemical Technology, 7, 96–102.
Gupta, P., Kumar, V., Usmani, Z., Rani, R., Chandra, A., & Gupta, V.K. (2020). Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress. Chemosphere, 240, 124944. https://doi.org/10.1016/j.chemosphere.2019.124944 DOI: https://doi.org/10.1016/j.chemosphere.2019.124944
Hanson, A.J., Luek, J.L., Tummings, S.S., McLaughlin, M.C., Blotevogel, J., & Mouser, P.J. (2019). High total dissolved solids in shale gas wastewater inhibit biodegradation of alkyl and nonylphenol ethoxylate surfactants. Science of The Total Environment, 668, 1094-1103. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.041
Huang, P., de-Bashan, L., Crocker, T., Kloepper, J.W., & Bashan, Y. (2017). Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biology and Fertility of Soils, 53, 199–208. https://doi.org/10.1007/s00374-016-1160-2 DOI: https://doi.org/10.1007/s00374-016-1160-2
Hussain, A., Arshad, M., Zahir, Z.A., &Asghar, M. (2015). Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pakistan Journal of Agricultural Sciences, 52, 915–922.
Indian Standard (IS: 3025).(2009). Methods of sampling and test (physical and chemical) for water used in industry. Bureau of Indian Standard, New Delhi.
Islam, F., Islam, M.S., Islam, M., Sikdar, B., Khalekuzzaman, M., & Islam, M.A. (2017). Detection of bacterial wilt disease of banana through biochemical approaches and its biological control. Plant Environment Development, 6(2), 19-23.
Jena, R., Pradhan, B., & Abdollahi, A. (2018). Curable Properties of Hot Water Springs in Odisha Related to Eastern Ghats Minerals: A Review. Scenario of Environmental Research and Development, 94-100.
Kaki, A.A., Ali, M.K., Milet, A., Moula, N., Thonart, P., & Chaouche, N.K. (2017). In vitro control and biofertilization features study of a Bacillus amyloliquefaciens(4RH) strain isolated from a hot spring soil in Algeria. African Journal of Microbiology Research, 11(43), 1564-1572. http://dx.doi.org/10.5897/AJMR2017.8745 DOI: https://doi.org/10.5897/AJMR2017.8745
Kalsait, R.P., Dehariya, N.K., Nagdev, S.A., & Umekar, M.J. (2018). Comparative Quality : A Quantitative Approach For Safe Drinking Water. Research Pharmaceutica, 2(2), 07-10.
Kambura, A.K., Mwirichia, R.K., Kasili, R.W., Karanja, E.N., Makonde, H.M., & Boga, H.I. (2016). Bacteria and Archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya. BMC Microbiology, 16, 136. https://doi.org/10.1186/s12866-016-0748-x DOI: https://doi.org/10.1186/s12866-016-0748-x
Khan, M.A., Asaf, S., Khan, A.L., Jan, R., Kang, S.M., Kim, K.M., & Lee, I.J. (2020). Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiology, 20, 175. DOI: https://doi.org/10.1186/s12866-020-01822-7
Khande, R., Sharma, S.K., Ramesh, A., & Sharma, M.P. (2017). Zinc solubilizing Bacillus strains that modulate growth, yield and zinc biofortification of soybean and wheat. Rhizosphere, 4, 126–138.https://doi.org/10. 1016/j.rhisph.2017.09.002 DOI: https://doi.org/10.1016/j.rhisph.2017.09.002
Kumar, A., Kumar, A., Thakur, P., Patil, S., Payal, C., Kumar, A., & Sharma, P. (2012). Antibacterial activity of green tea (Camellia sinensis) extracts against various bacteria isolated from environmental sources. Recent Research in Science and Technology, 4,19–23.
Kumar, M., Prasanna, R., Bidyarani, N., Babu, S., Mishra, B.K., et al. (2013). Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Scientia Horticulturae, 164, 94–101. DOI: https://doi.org/10.1016/j.scienta.2013.09.014
Kumar, R., & Sharma, R.C. (2019). Microbial diversity and physico-chemical attributes of two hot water springs in the Garhwal Himalaya, India. Journal of Microbiology, Biotechnology and Food Sciences, 8, 1249– 1253. DOI: https://doi.org/10.15414/jmbfs.2019.8.6.1249-1253
Kumar, A., Rabha, J., & Jha, D.K. (2021). Antagonistic activity of lipopeptide‐biosurfactant producing Bacillus subtilis AKP, against Colletotrichum capsici, the causal organism of anthracnose disease of chilli. Biocatalysis and Agricultural Biotechnology, 36, 102133. https://doi.org/10.1016/j.bcab.2021.102133 DOI: https://doi.org/10.1016/j.bcab.2021.102133
Kushwaha, P., Srivastava, R., Pandiyan, K., Singh, A., Chakdar, H., et al. (2021). Enhancement in plant growth and zinc biofortification of chickpea (Cicer arietinum L.) by Bacillus altitudinis. Journal of Soil Science and Plant Nutrition, 21, 922–935.https://doi.org/10.1007/s42729-021-00411-5 DOI: https://doi.org/10.1007/s42729-021-00411-5
Lele, O.H., & Deshmukh, P.V. (2016). Isolation and characterization of thermophilic Bacillus sp. with extracellular enzymatic activities from hot spring of Ganeshpuri, Maharashtra, India. International Journal of Applied Research, 2, 427–430.
López, M.J., Jurado, M.M., López-González, J.A., Estrella-González, M.J., Martínez-Gallardo, M.R., Toribio, A., & Suárez-Estrella, F. (2021). Characterization of Thermophilic Lignocellulolytic Microorganisms in Composting. Frontiers in Microbiology, 12, 697480. DOI: https://doi.org/10.3389/fmicb.2021.697480
Lotfi, G., Hassaine, H., Klouche, N., Khadir, A., Aissaoui, N., Nas, F., & Zingg, W. (2014). Detection of biofilm formation of a collection of fifty strains of Staphylococcus aureus isolated in Algeria at the University Hospital of Tlemcen. Journal of bacteriology research, 6, 1–6. DOI: https://doi.org/10.5897/JBR2013.0122
Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556. DOI: https://doi.org/10.1146/annurev.micro.62.081307.162918
Mao, X., Ye, J., Shi, Z., & Dong, Y. (2022). The Possible Source of Abnormally High Sodium Content in Low‐Salinity Geothermal Water. Groundwater, 61(4), 517-531. DOI: https://doi.org/10.1111/gwat.13264
Mishra, P., & Dash, D. (2014). Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience: The Journal of Sustainable Development, 11 (1), 41–61.
Mohammad, B.T., Al Daghistani, H.I., Jaouani, A.,Abdel-Latif, S., & Kennes, C. (2017). Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. International Journal of Microbiology, 2017, 6943952.https://doi.org/10.1155/2017/6943952 DOI: https://doi.org/10.1155/2017/6943952
Morales-Cedeño, L.R., Orozco-Mosqueda, M.D.C., Loeza-Lara, P.D., Parra-Cota, F.I., de los Santos-Villalobos, S., & Santoyo, G. (2021). Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: fundamentals, methods of application and future perspectives. Microbiological Research, 242, 126612.https://doi.org/10.1016/j.micres.2020.126612 DOI: https://doi.org/10.1016/j.micres.2020.126612
Moreno, J., López-González, J.A., Arcos-Nievas, M.A., Suárez-Estrella, F., Jurado, M.M., Estrella-González, M.J., et al. (2021). Revisiting the succession of microbial populations throughout composting: a matter of thermotolerance. Science of The Total Environment, 773, 145587. DOI: https://doi.org/10.1016/j.scitotenv.2021.145587
Nakkeeran, S., Kavitha, K., Chandrasekar, G., Renukadevi, P., & Fernando, W.G.D. (2006). Induction of plant defense compounds by Pseudomonas chlororaphis PA23 and Bacillus subtilis BSCBE4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum. Biocontrol Science and Technology, 16, 403–416. DOI: https://doi.org/10.1080/09583150500532196
Narsing Rao, M.P., Dong, Z-Y., Luo, Z-H., Li, M.M., Liu, B.B., Guo, S.X., Hozzein, W.N., Xiao, M., & Li, W.J. (2021). Physicochemical and Microbial Diversity Analyses of Indian Hot Springs. Frontiers in Microbiology, 12, 627200. https://doi.org/10.3389/fmicb.2021.627200 DOI: https://doi.org/10.3389/fmicb.2021.627200
Nazari, L., & Mehrabi, M. (2019). Purification and characterization of an extracellular thermotolerant alkaliphilic serine protease secreted from newly isolated Bacillus sp. DEM07 from a hot spring in Dehloran, Iran. Biocatalysis and Agricultural Biotechnology, 18, 101053. https://doi.org/10.1016/j.bcab.2019.101053 DOI: https://doi.org/10.1016/j.bcab.2019.101053
Panda, M.K., Sahu, M.K., &Tayung, K. (2013). Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Iranian Journal of Microbiology, 5, 159.
Panda, A.K., Bisht, S.S., De Mandal, S., & Kumar, N.S. (2016). Bacterial and archeal community composition in hot springs from Indo-Burma region, North-east India. AMB Express, 6, 111. https://doi.org/10.1186/s13568-016-0284-y DOI: https://doi.org/10.1186/s13568-016-0284-y
Pandey, A., Dhakar, K., Sharma, A. et al. (2015). Thermophilic bacteria that tolerate a wide temperature and pH range colonize the Soldhar (95 °C) and Ringigad (80 °C) hot springs of Uttarakhand, India. Annals of Microbiology, 65, 809–816. https://doi.org/10.1007/s13213-014-0921-0 DOI: https://doi.org/10.1007/s13213-014-0921-0
Pereira, S.I., & Castro,P.M. (2014). Phosphate solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecological Engineering, 73, 526–535. https://doi.org/10.1016/j.ecoleng.2014.09.060 DOI: https://doi.org/10.1016/j.ecoleng.2014.09.060
Podile, A.R., & Kishore, G.K. (2006). Plant growth-promoting rhizobacteria. In S.S. Gnanamanickam (Ed.) Plant-Associated Bacteria (pp. 195-230). Springer; Netherlands, 195–230. DOI: https://doi.org/10.1007/1-4020-4538-7_6
Poddar, A., & Das, S.K. (2018). Microbiological Studies of Hot Springs in India: A Review. Archives of Microbiology, 200, 1–18.https://doi.org/10.1007/s00203-017-1429-3 DOI: https://doi.org/10.1007/s00203-017-1429-3
Priya, I., Dhar, M.K., Bajaj, B.K., Koul, S., & Vakhlu, J. (2016). Cellulolytic activity of thermophilic bacilli isolated from Tattapani hot spring sediment in north west Himalayas. Indian Journal of Microbiology, 56, 228–231.https://doi.org/10.1007/s12088-016-0578-4 DOI: https://doi.org/10.1007/s12088-016-0578-4
Radhakrishnan, R., & Lee, I.J. (2016). Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiology and Biochemistry, 109, 181–189. https://doi.org/10.1016/J. PLAPHY.2016.09.018. DOI: https://doi.org/10.1016/j.plaphy.2016.09.018
Rahman, M.M.E., Hossain, D.M., Suzuki, K., Shiiya, A., Suzuki, K., Dey, T.K., Nonaka, M., & Harada, N. (2016). Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathology, 45, 103–117. https://doi.org/10.1007/s13313-016-0397-4 DOI: https://doi.org/10.1007/s13313-016-0397-4
Rakshak, K., Ravinder, K., Nupur., Srinivas, T.N.R., & Kumar, P.A. (2013). Caldimonasmeghalayensis sp. nov., a novel thermophilic betaproteobacterium isolated from a hot spring of Meghalaya in northeast India. Antonie van Leeuwenhoek, 104, 1217–1225.https://doi.org/10.1007/s10482-013-0043-x DOI: https://doi.org/10.1007/s10482-013-0043-x
Rajput, L., Imran, A., Mubeen, F., & Hafeez, F.Y. (2013). Salt tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pakistan Journal of Botany, 45, 1955–1962.
Ramesh, A., Sharma, S.K., Sharma, M.P., Yadav, N., &Joshi, O.P. (2014). Inoculation of zinc solubilizing Bacillus aryabhattaistrains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Applied Soil Ecology, 73, 87–96. https://doi.org/10.1016/j.apsoil.2013.08.009 DOI: https://doi.org/10.1016/j.apsoil.2013.08.009
Rodriguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339. DOI: https://doi.org/10.1016/S0734-9750(99)00014-2
Saharan, B.S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sciences and Medicine Research, 21, 1–30.
Saharan, BS, & Verma, S. (2014). Potential plant growth promoting activity of Bacillus licheniformis UHI(II)7.International Journal of Microbial Resource Technology, 2(3), 22-27.
Sahay, H., Yadav, A.N., Singh, A.K., Singh, S., Kaushik, R., & Saxena, A.K. (2017). Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech, 7, 118. DOI: https://doi.org/10.1007/s13205-017-0762-1
Sarkar, S., Mondal, M., Ghosh, P., Saha, M., & Chatterjee, S. (2020). Quantification of total protein content from some traditionally used edible plant leaves: a comparative study. Journal of Medicinal Plant Studies, 8(4), 166-170. https://doi.org/10.22271/plants.2020.v8.i4c.1164 DOI: https://doi.org/10.22271/plants.2020.v8.i4c.1164
Sarangthem, I., Rajkumari, L., Ngashangva, N., Nandeibam, J., Yendrembam, R.B.S., & Mukherjee, P.K. (2023). Isolation and Characterization of Bacteria from Natural Hot Spring and Insights into the Thermophilic Cellulase Production. Current Microbiology, 80, 64. https://doi.org/10.1007/s00284-022-03168-x DOI: https://doi.org/10.1007/s00284-022-03168-x
Sarkar, R.D., & Kalita,M.C. (2022). Green Synthesized Se Nanoparticle-mediated Alleviation of Salt Stress in Field Mustard TS-36 Variety. Journal of Biotechnology, 359, 95-107. https://doi.org/10.1016/j.jbiotec.2022.09.013 DOI: https://doi.org/10.1016/j.jbiotec.2022.09.013
Satyanarayana, T., Raghukumar, C., & Shivaji, S. (2005). Extremophilic microbes: diversity and perspectives. Current Science, 89, 78–90.
Shilev, S. (2020). Plant-growth-promoting bacteria mitigating soil salinity stress in plants. Applied Sciences, 10, 7326. DOI: https://doi.org/10.3390/app10207326
Singh, D., Yadav, D.K., Sinha, S., & Upadhyay, B.K. (2012). Utilization of plant growth promoting Bacillus subtilis isolates for the management of bacterial wilt incidence in tomato caused by Ralstonia solanacearum race 1 biovar 3. Indian Phytopathology, 65(1),18–24. https://epubs.icar.org.in/index.php/IPPJ/article/view/ 16082
Singh, Y., Gulati, A., Singh, D.P., & Khattar, J.I.S. (2018). Cyanobacterial community structure in hot water springs of Indian North-Western Himalayas: a morphological, molecular and ecological approach. Algal Research, 29, 179–192. https://doi.org/10.1016/j.algal.2017.11.023 DOI: https://doi.org/10.1016/j.algal.2017.11.023
Sivasakthi, S., Usharani, G., & Saranraj, P. (2014). Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. African Journal of Agricultural Research, 9,1265–1277.
Slatni, T., Kroma, A., Aydi, S., Gouia, C., & Abdelly, C.H. (2008). Growth nitrogen fixation and ammonium assimilation in common been subjected to iron deficiency. Plant and Soil, 312, 49–57. DOI: https://doi.org/10.1007/s11104-007-9481-4
Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857.https://doi.org/10.1111/j.1365-2958.2005.04587.x DOI: https://doi.org/10.1111/j.1365-2958.2005.04587.x
Sun, G., Yao, T., Feng, C., Chen, L., Li, J., & Wang, L. (2016). Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus. Biological Control, 104, 35–43. http://dx.doi.org/10.1016/j.biocontrol.2016.10.008 DOI: https://doi.org/10.1016/j.biocontrol.2016.10.008
Sudisha, J., Niranjana, S.R., Umesha, S., Prakash, H.S., & Shekar Shetty, H. (2006). Transmission of seed-borne infection of muskmelon by Didymellabryoniae and effect of seed treatments on disease incidence and fruit yield. Biological Control, 37, 196–205. DOI: https://doi.org/10.1016/j.biocontrol.2005.11.018
Syiemiong, D., & Jha, D.K. (2019). Search for plant growth promoting actinobacteria from a limestone mining spoil soil in Meghalaya. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 5, 1024-36.
Tekere, M., Lötter, A., Olivier, J., Jonker, N., &Venter, S. (2011). Metagenomic analysis of bacterial diversity of Siloam hot water spring, Limpopo, South Africa. African Journal of Biotechnology, 10, 18005–18012.https://doi.org/10.5897/AJB11.899 DOI: https://doi.org/10.5897/AJB11.899
Tekere, M., Prinsloo, A., Olivier, J., Jonker, N., & Venter, S. (2012). An evaluation of the bacterial diversity at Tshipise, Mphephu and Sagole hot water springs, Limpopo Province, South Africa. African Journal of Microbiology Research, 6, 4993–5004.https://doi.org/10.5897/AJMR12.250 DOI: https://doi.org/10.5897/AJMR12.250
Tripathi, N., & Sapra, A. (2021). Gram Staining. In: Statpearls. Treasure Island (FL: StatPearls Publishing).
Verma, J.P., Jaiswal, D.K., Krishna, R., Prakash, S., Yadav, J., & Singh, V. (2018). Characterization and Screening of Thermophilic Bacillus Strains for Developing Plant Growth Promoting Consortium From Hot Spring of Leh and Ladakh Region of India. Frontiers in Microbiology, 9, 1293.https://doi.org/10.3389/fmicb.2018.01293 DOI: https://doi.org/10.3389/fmicb.2018.01293
Villarreal-Delgado, M.F., Villa-Rodríguez, E.D., Cira-Chávez, L.A., Estrada-Alvarado, M.I., Parra-Cota, F.I., & Santos-Villalobos, S.D.L. (2018). The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Revista Mexicana de Fitopatología, 36, 95–130. https://doi.org/10.18781/r.mex.fit.1706-5 DOI: https://doi.org/10.18781/R.MEX.FIT.1706-5
Wani, P.A., & Khan, M.S. (2013). Nickel Detoxification and Plant Growth Promotion by Multi Metal Resistant Plant Growth Promoting Rhizobium Species RL9. Bulletin of Environmental Contamination and Toxicology, 91, 117–124.https://doi.org/10.1007/s00128-013-1002-y DOI: https://doi.org/10.1007/s00128-013-1002-y
Yadav, A.N., Verma, P., Kumar, M., Pal, K.K., Dey, R., et al. (2015). Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Annals of Microbiology, 65, 611–629.https://doi.org/10.1007/s13213-014-0897-9 DOI: https://doi.org/10.1007/s13213-014-0897-9
Yang, D., Wang, B., Wang, J., Chen, Y., & Zhou, M. (2009). Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biological Control, 51, 61–65. https://doi.org/10.1016/j.biocontrol.2009.05.021 DOI: https://doi.org/10.1016/j.biocontrol.2009.05.021
Yazdani, M., Naderi-Manesh, H., Khajeh, K., Soudi, M.R., Asghari, S.M., &Sharifzadeh, M.(2009). Isolation and characterization of a novel gamma-radiation-resistant bacterium from hot spring in Iran. Journal of Basic Microbiology, 49, 119–127. https://doi.org/10.1002/jobm.200800177 DOI: https://doi.org/10.1002/jobm.200800177
Yu, X., Ai, C., Xin, L., & Zhou, G. (2011). The siderophore-
producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47, 138–145. https://doi.org/10.1016/j.ejsobi.2010.11.001 DOI: https://doi.org/10.1016/j.ejsobi.2010.11.001
Zaheer, A., Malik, A., Sher, A., Qaisrani, M.M., Mehmood, A., et al. (2019). Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi Journal of Biological Sciences, 26, 1061–1067.https://doi.org/10.1016/j.sjbs.2019.04.004 DOI: https://doi.org/10.1016/j.sjbs.2019.04.004
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.