Hematite Nanoparticle Mediated Enhancement of Chlorella minutissima Lipid Productivity for Sustainable Biodiesel Production

Authors

DOI:

https://doi.org/10.18006/2024.12(3).366.378

Keywords:

Hematite nanoparticles, Microalgal growth, Lipid productivity, Biodiesel production, Iron oxide nanoparticles, Biofuel Enhancement

Abstract

This study aims to enhance lipid and biofuel productivity from Chlorella minutissima with hematite (α-Fe2O3) nanoparticles (IONPs) as a growth stimulant. The IONPs were synthesized using chemical method and characterized using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX) analysis to confirm their structure and composition. The experimental setup involved inoculating various concentrations of IONPs (10, 20, and 30 mg·L−1) into the microalgal BG-11 growth medium to evaluate their impact on microalgal growth and biodiesel production. Results of this study showed that a concentration of 10 mg·L−1 of IONPs significantly increased the biomass concentration to 508.1 mg·L−1 over a 20-day cultivation period, achieving the highest biomass production rate of 31.7 mg·L−1·d−1 at this concentration. The lipid extracted from the microalgal biomass was subsequently transesterified into biodiesel. Key biodiesel properties, such as cetane number, calorific value, density, and viscosity, were measured to assess fuel quality. The findings demonstrate that incorporating hematite nanoparticles into the microalgal growth medium can significantly boost both lipid content and overall growth, thereby improving biodiesel production. This study suggests that the use of α-Fe2O3 nanoparticles presents a promising approach for scalable and sustainable biofuel production from microalgae.

Author Biography

Moyad Shahwan, Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates

Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates

References

Aghabeigi, F., Nikkhah, H., Zilouei, H., & Bazarganipour, M. (2023). Immobilization of lipase on the graphene oxides magnetized with NiFe2O4 nanoparticles for biodiesel production from microalgae lipids. Process Biochemistry, 126, 171–185. https://doi.org/10.1016/j.procbio.2023.01.012 DOI: https://doi.org/10.1016/j.procbio.2023.01.012

Al-Ansari, M. M., Al-Humaid, L., Al-Dahmash, N. D., & Aldawsari, M. (2023). Assessing the benefits of Chlorella vulgaris microalgal biodiesel for internal combustion engines: Energy and exergy analyses. Fuel, 344, 128055. https://doi.org/10.1016/ j.fuel.2023.128055 DOI: https://doi.org/10.1016/j.fuel.2023.128055

Arif, M., Li, Y., El-Dalatony, M. M., Zhang, C., Li, X., & Salama, E.S. (2021).A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal. Renewable Energy, 163, 1973–1982. https://doi.org/10.1016/j.renene.2020.10.066 DOI: https://doi.org/10.1016/j.renene.2020.10.066

Attre, T., Roy, A., & Bharadvaja, N. (2018). Influence of various Carbon and Nitrogen sources on Lipid productivity of Chlorella minutissima and Scenedesmus sp. and their FAME analysis. Journal of Algal Biomass Utilization, 9(1): 72-85. https://doi.org/10.1016/0304-4157(79)90001-14

Banerjee, S., Rout, S., Banerjee, S., Atta, A., & Das, D. (2019). Fe2O3 nanocatalyst aided transesterification for biodiesel production from lipid-intact wet microalgal biomass: A biorefinery approach. Energy Conversion and Management, 195, 844–853. https://doi.org/10.1016/j.enconman.2019.05.060 DOI: https://doi.org/10.1016/j.enconman.2019.05.060

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099 DOI: https://doi.org/10.1139/o59-099

Boopathi, M., Sathiskumar, S., Manideep, B., Jayakrishnan, S., Praveen, S. B., Gokul, V., Sakthi Ganesh, P., & Gokulraj, V. (2023). Experimental investigation on performance and emission characteristics of algae oil biodiesel with methanol additive in CI engine. Materials Today: Proceedings, S2214785323014529. https://doi.org/10.1016/j.matpr.2023.03.405 DOI: https://doi.org/10.1016/j.matpr.2023.03.405

Chandra, R., Amit, & Ghosh, U. K. (2019).Effects of various abiotic factors on biomass growth and lipid yield of Chlorella minutissima for sustainable biodiesel production. Environmental Science and Pollution Research, 26(4), 3848–3861. https://doi.org/10.1007/s11356-018-3696-1 DOI: https://doi.org/10.1007/s11356-018-3696-1

Cheng, J., Zhu, Y., Li, K., Lu, H., & Shi, Z. (2020). Calcinated MIL-100(Fe) as a CO2 adsorbent to promote biomass productivity of Arthrospira platensis cells. Science of the Total Environment, 699, 134375. https://doi.org/10.1016/j.scitotenv.2019.134375 DOI: https://doi.org/10.1016/j.scitotenv.2019.134375

Da Silva Vaz, B., Alberto Vieira Costa, J., & Greque De Morais, M. (2020). Physical and biological fixation of CO2 with polymeric nanofibers in outdoor cultivations of Chlorella fusca LEB 111. International Journal of Biological Macromolecules, 151, 1332–1339. https://doi.org/10.1016/j.ijbiomac.2019.10.179 DOI: https://doi.org/10.1016/j.ijbiomac.2019.10.179

Ganesh Saratale, R., Ponnusamy, V. K., Jeyakumar, R. B., Sirohi, R., Piechota, G., et al. (2022).Microalgae cultivation strategies using cost–effective nutrient sources: Recent updates and progress towards biofuel production. Bioresource Technology, 361, 127691. https://doi.org/10.1016/j.biortech.2022.127691 DOI: https://doi.org/10.1016/j.biortech.2022.127691

Geng, L., Zhou, W., Qu, X., Sa, R., Liang, J., Wang, X., & Sun, M. (2023). Iodine values, peroxide values and acid values of Bohai algae oil compared with other oils during the cooking. Heliyon, 9(4), e15088. https://doi.org/10.1016/j.heliyon.2023.e15088 DOI: https://doi.org/10.1016/j.heliyon.2023.e15088

Hassanpour, M., Hosseini Tafreshi, S. A., Amiri, O., Hamadanian, M., & Salavati-Niasari, M. (2020). Toxic effects of Fe2WO6 nanoparticles towards microalga Dunaliella salina: Sonochemical synthesis nanoparticles and investigate its impact on the growth. Chemosphere, 258, 127348. https://doi.org/10.1016/ j.chemosphere.2020.127348 DOI: https://doi.org/10.1016/j.chemosphere.2020.127348

He, M., Yan, Y., Pei, F., Wu, M., Gebreluel, T., Zou, S., & Wang, C. (2017). Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Scientific Reports, 7(1), 15526. https://doi.org/10.1038/s41598-017-15667-0 DOI: https://doi.org/10.1038/s41598-017-15667-0

Huang, W., Zhou, Y., Zhao, T., Tan, L., & Wang, J. (2022).The effects of copper ions and copper nanomaterials on the output of amino acids from marine microalgae. Environmental Science and Pollution Research, 29(7), 9780–9791. https://doi.org/10.1007/ s11356-021-16347-3 DOI: https://doi.org/10.1007/s11356-021-16347-3

Kadar, E., Rooks, P., Lakey, C., & White, D. A. (2012).The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Science of the Total Environment, 439, 8–17. https://doi.org/10.1016/j.scitotenv.2012.09.010 DOI: https://doi.org/10.1016/j.scitotenv.2012.09.010

Kaliamurthi, S., Selvaraj, G., Cakmak, Z. E., Korkmaz, A. D., & Cakmak, T. (2019).The relationship between Chlorella sp. and zinc oxide nanoparticles: Changes in biochemical, oxygen evolution, and lipid production ability. Process Biochemistry, 85, 43–50. https://doi.org/10.1016/j.procbio.2019.06.005 DOI: https://doi.org/10.1016/j.procbio.2019.06.005

Kaushik, P., Garima, G., Abhishek Chauhan, A. C., & Pankaj Goyal, P. G. (2009). Screening of Lyngbya majuscula for potential antibacterial activity and HPTLC analysis of active methanolic extract. Journal of Pure and Applied Microbiology, 3 (1), 169-174.

Khan, M. I., Shin, J. H., & Kim, J. D. (2018).The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36. https://doi.org/10.1186/s12934-018-0879-x DOI: https://doi.org/10.1186/s12934-018-0879-x

Lassoued, A., Dkhil, B., Gadri, A., & Ammar, S. (2017). Control of the shape and size of iron oxide (Α-fe2o3) nanoparticles synthesized through the chemical precipitation method. Results in Physics, 7, 3007–3015. https://doi.org/10.1016/j.rinp.2017.07.066 DOI: https://doi.org/10.1016/j.rinp.2017.07.066

Lee, J.Y., Yoo, C., Jun, S.Y., Ahn, CY, & Oh, H.M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1), S75–S77. https://doi.org/10.1016/j.biortech.2009.03.058 DOI: https://doi.org/10.1016/j.biortech.2009.03.058

Ma, X., Mi, Y., Zhao, C., & Wei, Q. (2022). A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. Science of the Total Environment, 806, 151387. https://doi.org/10.1016/j.scitotenv.2021.151387 DOI: https://doi.org/10.1016/j.scitotenv.2021.151387

Mallick, N., Mandal, S., Singh, A. K., Bishai, M., & Dash, A. (2012). Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. Journal of Chemical Technology & Biotechnology, 87(1), 137–145. https://doi.org/10.1002/jctb.2694 DOI: https://doi.org/10.1002/jctb.2694

Marsalek, B., Jancula, D., Marsalkova, E., Mashlan, M., Safarova, K., Tucek, J., & Zboril, R. (2012). Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environmental Science & Technology, 46(4), 2316–2323. https://doi.org/10.1021/es2031483 DOI: https://doi.org/10.1021/es2031483

Mishra, S. R., Mohanty, M. K., Das, S. P., & Pattanaik, A. K. (2014). Optimization of base-catalyzed transesterification of Simarouba glauca oil for biodiesel production. International Journal of Sustainable Energy, 33(6), 1033–1040. https://doi.org/10.1080/14786451.2013.796942 DOI: https://doi.org/10.1080/14786451.2013.796942

Mondal, M., Khan, A. A., & Halder, G. (2021). Estimation of biodiesel properties based on fatty acid profiles of Chlamydomonas sp. BTA 9032 and Chlorella sp. BTA 9031 obtained under mixotrophic cultivation conditions. Biofuels, 12(10), 1175–1181. https://doi.org/10.1080/17597269.2019.1600453 DOI: https://doi.org/10.1080/17597269.2019.1600453

Moschona, A., Spanou, A., Pavlidis, I. V., Karabelas, A. J., & Patsios, S. I. (2024). Optimization of Enzymatic Transesterification of Acid Oil for Biodiesel Production Using a Low-Cost Lipase: The Effect of Transesterification Conditions and the Synergy of Lipases with Different Regioselectivity. Applied biochemistry and biotechnology, 10.1007/s12010-024-04941-3. DOI: https://doi.org/10.1007/s12010-024-04941-3

Muhammad, G., Alam, M. A., Mofijur, M., Jahirul, M. I., Lv, Y., Xiong, W., Ong, H. C., & Xu, J. (2021). Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renewable and Sustainable Energy Reviews, 135, 110209. https://doi.org/10.1016/ j.rser.2020.110209 DOI: https://doi.org/10.1016/j.rser.2020.110209

Mykhaylenko, N. F., & Zolotareva, E. K. (2017). The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Clorella vulgaris. Nanoscale Research Letters, 12(1), 147. https://doi.org/10.1186/s11671-017-1914-2 DOI: https://doi.org/10.1186/s11671-017-1914-2

Nematian, T., Salehi, Z., & Shakeri, A. (2020). Conversion of bio-oil extracted from Chlorella vulgaris micro algae to biodiesel via modified superparamagnetic nano-biocatalyst. Renewable Energy, 146, 1796–1804. https://doi.org/10.1016/j.renene.2019.08.048 DOI: https://doi.org/10.1016/j.renene.2019.08.048

Pahariya, R., Chauhan, A., Ranjan, A., Basniwal, R. K., Upadhyay, S., Thakur, S. K., & Jindal, T. (2023). A critical review on the efficacy and mechanism of nanoparticle-based flocculants for biodiesel feedstock production from microalgae. BioEnergy Research, 17(2), 1065–1079. https://doi.org/10.1007/s12155-023-10672-w DOI: https://doi.org/10.1007/s12155-023-10672-w

Paulson, E., & Jothibas, M. (2021). Significance of thermal interfacing in hematite (Α-fe2o3) nanoparticles synthesized by sol-gel method and its characteristics properties. Surfaces and Interfaces, 26, 101432. https://doi.org/10.1016/j.surfin.2021.101432 DOI: https://doi.org/10.1016/j.surfin.2021.101432

Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 975(3), 384–394. https://doi.org/10.1016/S0005-2728(89)80347-0 DOI: https://doi.org/10.1016/S0005-2728(89)80347-0

Portaccio, M., Faramarzi, B., & Lepore, M. (2023). Probing biochemical differences in lipid components of human cells by means of atr-ftir spectroscopy. Biophysica, 3(3), 524–538. https://doi.org/10.3390/biophysica3030035 DOI: https://doi.org/10.3390/biophysica3030035

Prabakaran, S., Manimaran, R., Mohanraj, T., & Ravikumar, M. (2021). Performance analysis and emission characteristics of VCR diesel engine fuelled with algae biodiesel blends. Materials Today: Proceedings, 45, 2784–2788. https://doi.org/10.1016/ j.matpr.2020.11.742 DOI: https://doi.org/10.1016/j.matpr.2020.11.742

Qayoom, M., Shah, K. A., Pandit, A. H., Firdous, A., & Dar, G. N. (2020). Dielectric and electrical studies on iron oxide (Α-fe2o3) nanoparticles synthesized by modified solution combustion reaction for microwave applications. Journal of Electroceramics, 45(1), 7–14. https://doi.org/10.1007/s10832-020-00219-2 DOI: https://doi.org/10.1007/s10832-020-00219-2

Rana, M. S., Bhushan, S., Sudhakar, D. R., & Prajapati, S. K. (2020). Effect of iron oxide nanoparticles on growth and biofuel potential of Chlorella spp. Algal Research, 49, 101942. https://doi.org/10.1016/j.algal.2020.101942 DOI: https://doi.org/10.1016/j.algal.2020.101942

Roy, B., Chandrasekaran, H., Palamadai Krishnan, S., Chandrasekaran, N., & Mukherjee, A. (2018). UVΑ pre-irradiation to P25 titanium dioxide nanoparticles enhanced its toxicity towards freshwater algae Scenedesmus obliquus. Environmental Science and Pollution Research, 25(17), 16729–16742. https://doi.org/10.1007/s11356-018-1860-2 DOI: https://doi.org/10.1007/s11356-018-1860-2

Saxena, P., Sangela, V., Ranjan, S., Dutta, V., Dasgupta, N., Phulwaria, M., Rathore, D. S., & Harish. (2020). Aquatic nanotoxicology: Impact of carbon nanomaterials on algal flora. Energy, Ecology and Environment, 5(4), 240–252. https://doi.org/10.1007/s40974-020-00151-9 DOI: https://doi.org/10.1007/s40974-020-00151-9

Shi, K., Gao, Z., Shi, T. Q., Song, P., Ren, L. J., Huang, H., & Ji, X. J. (2017). Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: the state of the art and future perspectives. Frontiers in microbiology, 8, 793. DOI: https://doi.org/10.3389/fmicb.2017.00793

Sun, YP, Li, X., Cao, J., Zhang, W., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1–3), 47–56. https://doi.org/10.1016/j.cis.2006.03.001 DOI: https://doi.org/10.1016/j.cis.2006.03.001

Taghizadeh, S. M., Ebrahiminezhad, A., Raee, M. J., Ramezani, H., Berenjian, A., & Ghasemi, Y. (2022). A study of l-lysine-stabilized iron oxide nanoparticles (IONPs) on microalgae biofilm formation of Chlorella vulgaris. Molecular Biotechnology, 64(6), 702-710. DOI: https://doi.org/10.1007/s12033-022-00454-8

Tesfa, B., Mishra, R., Zhang, C., Gu, F., & Ball, A. D. (2013). Combustion and performance characteristics of CI (Compression ignition) engine running with biodiesel. Energy, 51, 101–115. https://doi.org/10.1016/j.energy.2013.01.010 DOI: https://doi.org/10.1016/j.energy.2013.01.010

Thirugnanasambandham, K. (2018). Biodiesel production from Cholrella minutissima microalgae: Kinetic and mathematical modeling. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(12), 1461–1468. https://doi.org/10.1080/15567036.2018.1477872. DOI: https://doi.org/10.1080/15567036.2018.1477872

Vasistha, S., Khanra, A., Clifford, M., & Rai, M. P. (2021).Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review. Renewable and Sustainable Energy Reviews, 137, 110498. https://doi.org/10.1016/j.rser.2020.110498 DOI: https://doi.org/10.1016/j.rser.2020.110498

Wallach, D. F. H., Verma, S. P., & Fookson, J. (1979). Application of laser raman and infrared spectroscopy to the analysis of Membrane structure. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 559(2–3), 153–208. https://doi.org/10.1016/0304-4157(79)90001-7 DOI: https://doi.org/10.1016/0304-4157(79)90001-7

Wang, F., Liu, T., Guan, W., Xu, L., Huo, S., Ma, A., Zhuang, G., & Terry, N. (2021). Development of a strategy for enhancing the biomass growth and lipid accumulation of Chlorella sp. Uj-3 using magnetic fe3o4 nanoparticles. Nanomaterials, 11(11), 2802. https://doi.org/10.3390/nano11112802 DOI: https://doi.org/10.3390/nano11112802

Yaşar, F. (2020). Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type. Fuel, 264, 116817.). DOI: https://doi.org/10.1016/j.fuel.2019.116817

Zhao, Q., Han, F., You, Z., Huang, Y., She, X., Shi, X., & Han, P. (2024a). Evaluation of microalgae biodiesel for carbon neutrality based on the waste treatment by the autotrophic and heterotrophic combination. Energy, 291, 130314. DOI: https://doi.org/10.1016/j.energy.2024.130314

Zhao, Y., Chen, Z., Li, W., Liu, F., Sun, L., Wu, M., Zhang, P., Hou, L., Li, M., & Xu, J. (2024b). Revealing the molecular basis regulating the iron deficiency response in quinoa seedlings by physio-biochemical and gene expression profiling analyses. Plant and Soil, 495(1–2), 77–97. https://doi.org/10.1007/s11104-023-06094-4 DOI: https://doi.org/10.1007/s11104-023-06094-4

Downloads

Published

2024-07-15

How to Cite

Pahariya, R., Chauhan, A., Ranjan, A., Basniwal, R. K., Upadhyay, S., Kataria, S., Tuli, H. S., Shahwan, M., Pathak, V. M., & Jindal, T. (2024). Hematite Nanoparticle Mediated Enhancement of Chlorella minutissima Lipid Productivity for Sustainable Biodiesel Production. Journal of Experimental Biology and Agricultural Sciences, 12(3), 366–378. https://doi.org/10.18006/2024.12(3).366.378

Issue

Section

RESEARCH ARTICLES

Categories