Molecular regulation of Mycobacterium tuberculosis Sigma factor H with Anti-sigma factor RshA under stress condition
DOI:
https://doi.org/10.18006/2024.12(1).153.162Keywords:
Sigma Factor, SigH, Anti-sigma factor, RshA, Mycobacterium tuberculosis, Bacterial transcriptionAbstract
Mycobacterium tuberculosis is the causative agent of tuberculosis, the leading fatal infectious disease that claims millions of lives every year. M. tuberculosis regulates its stress condition response using its regulatory protein, Sigma Factor H, which binds with its cognate anti-sigma factor RshA in normal conditions, forming a complex inhibiting transcription. During oxidative stress, SigH is released from the complex and binds to RNA Polymerase (RNAP) to initiate transcription. Thus, it is important to understand the molecular conformational state of SigH in complex with different protein partners under different cellular or environmental contexts. This work intends to analyze the SigH-RshA complex, which revealed the variation in SigH shown during complex formation with RNAP and RshA, respectively. Previously, Hydrogen Deuterium Exchange-Mass Spectrometry (HDX-MS) analysis of SigH-RshA interaction provided a detailed insight into the critical residues participating in the interaction. The HDX-MS data were used to dock RshA on the open conformation of SigH from the SigH-RNAP complex structure (PDB: 5ZX2), and closed conformation was obtained from protein modelling. The docking revealed that closed conformation of SigH complexing with RshA in terms of HDX-MS data revealed a major structural shift in SigH while interacting with two different binding partners, RshA and RNAP, under variable environmental conditions. This structural shift of SigH with RshA and RNAP has significance in understanding the stress response of M. tuberculosis, and SigH could prove to be a potential drug target.
References
Baú, D., Martin, A. J., Mooney, C., Vullo, A., Walsh, I., & Pollastri, G. (2006). Distill: A suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins. BMC Bioinformatics, 7(1), 402. https://doi.org/10.1186/1471-2105-7-402 DOI: https://doi.org/10.1186/1471-2105-7-402
Borukhov, S., & Nudler, E. (2003). RNA polymerase holoenzyme: Structure, function and biological implications. Current Opinion in Microbiology, 6(2), 93–100. https://doi.org/10.1016/S1369-5274(03)00036-5 DOI: https://doi.org/10.1016/S1369-5274(03)00036-5
Campagne, S., Allain, F. H.-T., & Vorholt, J. A. (2015). Extra Cytoplasmic Function sigma factors, recent structural insights into promoter recognition and regulation. Current Opinion in Structural Biology, 30, 71–78. https://doi.org/10.1016/j.sbi.2015.01.006 DOI: https://doi.org/10.1016/j.sbi.2015.01.006
Campagne, S., Marsh, M. E., Capitani, G., Vorholt, J. A., & Allain, F. H.-T. (2014). Structural basis for −10 promoter element melting by environmentally induced sigma factors. Nature Structural & Molecular Biology, 21(3), 269–276. https://doi.org/10.1038/nsmb.2777 DOI: https://doi.org/10.1038/nsmb.2777
de Vries, S. J., van Dijk, M., & Bonvin, A. M. J. J. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5(5), 883–897. https://doi.org/10.1038/ nprot.2010.32 DOI: https://doi.org/10.1038/nprot.2010.32
Dolatshahi, S., Fonseca, L. L., & Voit, E. O. (2016). New insights into the complex regulation of the glycolytic pathway in Lactococcus lactis. I. Construction and diagnosis of a comprehensive dynamic model. Molecular BioSystems, 12(1), 23–36. https://doi.org/10.1039/C5MB00331H DOI: https://doi.org/10.1039/C5MB00331H
Duncan, L., & Losick, R. (1993). SpoIIAB is an anti-sigma factor that binds to and inhibits transcription by regulatory protein sigma F from Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 90(6), 2325–2329. https://doi.org/10.1073/pnas.90.6.2325 DOI: https://doi.org/10.1073/pnas.90.6.2325
Feklístov, A., Sharon, B. D., Darst, S. A., & Gross, C. A. (2014). Bacterial Sigma Factors: A Historical, Structural, and Genomic Perspective. Annual Review of Microbiology, 68(1), 357–376. https://doi.org/10.1146/annurev-micro-092412-155737 DOI: https://doi.org/10.1146/annurev-micro-092412-155737
Fernandes, N. D., Wu, Q. L., Kong, D., Puyang, X., Garg, S., & Husson, R. N. (1999). A mycobacterial extracytoplasmic sigma factor involved in survival following heat shock and oxidative stress. Journal of bacteriology, 181(14), 4266–4274. https://doi.org/10.1128/JB.181.14.4266-4274.1999 DOI: https://doi.org/10.1128/JB.181.14.4266-4274.1999
Hassan, H. M., & Fridovich, I. (1979). Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Archives of Biochemistry and Biophysics, 196(2), 385–395. https://doi.org/10.1016/0003-9861(79)90289-3 DOI: https://doi.org/10.1016/0003-9861(79)90289-3
Helmann J. D. (2002). The extracytoplasmic function (ECF) sigma factors. Advances in microbial physiology, 46, 47–110. https://doi.org/10.1016/s0065-2911(02)46002-x DOI: https://doi.org/10.1016/S0065-2911(02)46002-X
Hughes, K. T., & Mathee, K. (1998). The Anti-Sigma Factors. Annual Review of Microbiology, 52(1), 231–286. https://doi.org/10.1146/annurev.micro.52.1.231 DOI: https://doi.org/10.1146/annurev.micro.52.1.231
Jamithireddy, A. K., Samajdar, R. N., Gopal, B., & Bhattacharyya, A. J. (2017). Determination of Redox Sensitivity in Structurally Similar Biological Redox Sensors. The Journal of Physical Chemistry B, 121(29), 7005–7015. https://doi.org/10.1021/acs.jpcb.7b02081 DOI: https://doi.org/10.1021/acs.jpcb.7b02081
Jung, Y.G., Cho, Y.B., Kim, M.S., Yoo, J.S., Hong, S.H., & Roe, J.H. (2011). Determinants of redox sensitivity in RsrA, a zinc-containing anti-sigma factor for regulating thiol oxidative stress response. Nucleic Acids Research, 39(17), 7586–7597. https://doi.org/10.1093/nar/gkr477 DOI: https://doi.org/10.1093/nar/gkr477
Kang, J.G. (1999). RsrA, an anti-sigma factor regulated by redox change. The EMBO Journal, 18(15), 4292–4298. https://doi.org/10.1093/emboj/18.15.4292 DOI: https://doi.org/10.1093/emboj/18.15.4292
Kumar, S., Badireddy, S., Pal, K., Sharma, S., Arora, C., Garg, S. K., Alam, M. S., Agrawal, P., Anand, G. S., & Swaminathan, K. (2012). Interaction of Mycobacterium tuberculosis RshA and SigH Is Mediated by Salt Bridges. PLoS ONE, 7(8), e43676. https://doi.org/10.1371/journal.pone.0043676 DOI: https://doi.org/10.1371/journal.pone.0043676
Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944 DOI: https://doi.org/10.1107/S0021889892009944
Li, L., Fang, C., Zhuang, N., Wang, T., & Zhang, Y. (2019). Structural basis for transcription initiation by bacterial ECF σ factors. Nature Communications, 10(1), 1153. https://doi.org/ 10.1038/s41467-019-09096-y DOI: https://doi.org/10.1038/s41467-019-09096-y
Li, W., Bottrill, A. R., Bibb, M. J., Buttner, M. J., Paget, M. S. B., & Kleanthous, C. (2003). The Role of Zinc in the Disulphide Stress-regulated Anti-sigma Factor RsrA from Streptomyces coelicolor. Journal of Molecular Biology, 333(2), 461–472. https://doi.org/10.1016/j.jmb.2003.08.038 DOI: https://doi.org/10.1016/j.jmb.2003.08.038
Manganelli, R., Dubnau, E., Tyagi, S., Kramer, F. R., & Smith, I. (1999). Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Molecular Microbiology, 31(2), 715–724. https://doi.org/10.1046/j.1365-2958.1999.01212.x DOI: https://doi.org/10.1046/j.1365-2958.1999.01212.x
Manganelli, R., Voskuil, M. I., Schoolnik, G. K., & Smith, I. (2001). The Mycobacterium tuberculosis ECF sigma factor σE: Role in global gene expression and survival in macrophages: sigE mutant of M. tuberculosis. Molecular Microbiology, 41(2), 423–437. https://doi.org/10.1046/j.1365-2958.2001.02525.x DOI: https://doi.org/10.1046/j.1365-2958.2001.02525.x
Morris, A. L., MacArthur, M. W., Hutchinson, E. G., & Thornton, J. M. (1992). Stereochemical quality of protein structure coordinates. Proteins: Structure, Function, and Genetics, 12(4), 345–364. https://doi.org/10.1002/prot.340120407 DOI: https://doi.org/10.1002/prot.340120407
Newman, J. D., Anthony, J. R., & Donohue, T. J. (2001). The importance of zinc-binding to the function of Rhodobacter sphaeroides ChrR as an anti-sigma factor. Journal of Molecular Biology, 313(3), 485–499. https://doi.org/10.1006/jmbi.2001.5069 DOI: https://doi.org/10.1006/jmbi.2001.5069
Paget, M. S. B., Bae, J.B., Hahn, M.Y., Li, W., Kleanthous, C., Roe, J.H., & Buttner, M. J. (2001). Mutational analysis of RsrA, a zinc-binding anti-sigma factor with a thiol-disulphide redox switch: Mutational analysis of RsrA. Molecular Microbiology, 39(4), 1036–1047. https://doi.org/10.1046/j.1365-2958.2001.02298.x DOI: https://doi.org/10.1046/j.1365-2958.2001.02298.x
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera?A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084 DOI: https://doi.org/10.1002/jcc.20084
Raman, S., Song, T., Puyang, X., Bardarov, S., Jacobs, W. R., & Husson, R. N. (2001). The Alternative Sigma Factor SigH Regulates Major Components of Oxidative and Heat Stress Responses in Mycobacterium tuberculosis. Journal of Bacteriology, 183(20), 6119–6125. https://doi.org/10.1128/JB.183.20.6119-6125.2001 DOI: https://doi.org/10.1128/JB.183.20.6119-6125.2001
Rodrigue, S., Provvedi, R., Jacques, P.É., Gaudreau, L., & Manganelli, R. (2006). The σ factors of Mycobacterium tuberculosis. FEMS Microbiology Reviews, 30(6), 926–941. https://doi.org/10.1111/j.1574-6976.2006.00040.x DOI: https://doi.org/10.1111/j.1574-6976.2006.00040.x
Rohde, K., Yates, R. M., Purdy, G. E., & Russell, D. G. (2007). Mycobacterium tuberculosis and the environment within the phagosome. Immunological Reviews, 219(1), 37–54. https://doi.org/10.1111/j.1600-065X.2007.00547.x DOI: https://doi.org/10.1111/j.1600-065X.2007.00547.x
Sachdeva, P., Misra, R., Tyagi, A. K., & Singh, Y. (2010). The sigma factors of Mycobacterium tuberculosis: Regulation of the regulators: The σ-factors of M. tuberculosis. FEBS Journal, 277(3), 605–626. https://doi.org/10.1111/j.1742-4658.2009.07479.x DOI: https://doi.org/10.1111/j.1742-4658.2009.07479.x
Saha, R. P., Bahadur, R. P., Pal, A., Mandal, S., & Chakrabarti, P. (2006). ProFace: A server for the analysis of the physicochemical features of protein-protein interfaces. BMC Structural Biology, 6(1), 11. https://doi.org/10.1186/1472-6807-6-11 DOI: https://doi.org/10.1186/1472-6807-6-11
Shi, L., Jung, Y.J., Tyagi, S., Gennaro, M. L., & North, R. J. (2003). Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proceedings of the National Academy of Sciences, 100(1), 241–246. https://doi.org/10.1073/pnas.0136863100 DOI: https://doi.org/10.1073/pnas.0136863100
Sippl, M. J. (1995). Knowledge-based potentials for proteins. Current Opinion in Structural Biology, 5(2), 229–235. https://doi.org/10.1016/0959-440X(95)80081-6 DOI: https://doi.org/10.1016/0959-440X(95)80081-6
Song, T., Dove, S. L., Lee, K. H., & Husson, R. N. (2003). RshA, an anti‐sigma factor that regulates the activity of the mycobacterial stress response sigma factor SigH. Molecular Microbiology, 50(3), 949–959. https://doi.org/10.1046/j.1365-2958.2003.03739.x DOI: https://doi.org/10.1046/j.1365-2958.2003.03739.x
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., et al. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427 DOI: https://doi.org/10.1093/nar/gky427
Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410. https://doi.org/10.1093/nar/gkm290 DOI: https://doi.org/10.1093/nar/gkm290
Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics, btw514. https://doi.org/10.1093/bioinformatics/btw514 DOI: https://doi.org/10.1093/bioinformatics/btw514
Zhang, Y., Feng, Y., Chatterjee, S., Tuske, S., Ho, M. X., Arnold, E., & Ebright, R. H. (2012). Structural Basis of Transcription Initiation. Science, 338(6110), 1076–1080. https://doi.org/10.1126/ science.1227786 DOI: https://doi.org/10.1126/science.1227786
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.