Analyzing the antimicrobial efficacy of the economically important tree Knema linifolia (Roxb.) Warb

Authors

  • Ria Bhar Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
  • Arpita Das Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
  • Srijan Haldar Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, India
  • Joydeep Paul Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India https://orcid.org/0000-0002-9444-1338

DOI:

https://doi.org/10.18006/2024.12(1).145.152

Keywords:

Knema linifolia, Antibacterial, Crude extract, Phytochemical, Ethno-medicine

Abstract

Knema linifolia is widely used for fuel wood, fodder and healthcare purposes. This plant treats various diseases in different parts of India, including Assam, Meghalaya, Alipurduar and Darjeeling districts of West Bengal. This study was carried out to determine the bactericidal properties of various parts of K. linifolia aqueous extract. The aqueous extract of the leaves, bark, stem and plant sap were tested against Escherichia coli (gram-negative bacteria) & Staphylococcus aureus (gram-positive bacteria). Among the tested extracts, both the leaf and bark extracts were found to have high bactericidal potential and can kill more than 60% of both bacterial strains with a concentration of 300µg/mL through an agar diffusion test. The MIC (Minimum Inhibitory Concentration) values for the leaf and bark extracts were recorded at ≤1000µg/mL & ≤500µg/mL, respectively. It has also been found that both the bark and leaf extracts contain high tannins, which might be essential for the antibacterial properties of Knema sp. There is currently a lack of proper documentation on using K. linifolia, which makes it challenging to conduct clinical or commercial research to support new uses in modern phototherapy. This study aims to fill this gap and provide significant information that could lead to changes in modern medicine.

References

Alen, Y., Nakajima, S., Nitoda, T., Baba, N., Kanzaki, H., & Kawazu, K. (2000). Two antinematodal phenolics from Knema hookeriana, a Sumatran rainforest plant. Zeitschrift fur Naturforschung. C, Journal of biosciences, 55(3-4), 300–303. https://doi.org/10.1515/znc-2000-3-426 DOI: https://doi.org/10.1515/znc-2000-3-426

Barstow, M., & Timberlake, J. (2018). Pterocarpus angolensis. The IUCN Red List of Threatened, 8235, 2018-1.

Bhaumik, S. K., Singh, M. K., Karmakar, S., & De, T. (2009). UDP-Gal: N-acetylglucosamine beta 1-4 galactosyltransferase expressing live attenuated parasites as vaccine for visceral leishmaniasis. Glycoconjugate journal, 26(6), 663–673. https://doi.org/10.1007/s10719-008-9212-y DOI: https://doi.org/10.1007/s10719-008-9212-y

Brantner, A., Pfeiffer, K.P., & Brantner, H. (1994). Applicability of diffusion methods required by the pharmacopoeias for testing antibacterial activity of natural compounds. Pharmazie, 49, 512–516.

Chipinga, J. V., Kamanula, & J. F., Moyo, P.B.B. (2018). Efficacy of Pterocarpus angolensis crude extracts against Candida krusei, Staphylococcus aureus, Streptococcus agalactiae and Escherichia coli. Malawi Medical Journal, 30 (4), 219-224. DOI: https://doi.org/10.4314/mmj.v30i4.2

Chung, K. T., Wong, T. Y., Wei, C. I., Huang, Y. W., & Lin, Y. (1998). Tannins and human health: a review. Critical reviews in food science and nutrition, 38(6), 421–464. https://doi.org/10.1080/10408699891274273 DOI: https://doi.org/10.1080/10408699891274273

Das, A., Raychaudhuri, U., & Chakraborty, R. (2012). Antimicrobial effect of edible plant extracts on the growth of some food borne bacteria including pathogens. Nutrafoods, 11, 99–104. DOI: https://doi.org/10.1007/s13749-012-0033-z

Dhawan, B. N. (2012). Anti-Viral Activity of Indian Plants. Proceedings of the National Academy of Sciences, India Section B, 82(1), 209-224. DOI: https://doi.org/10.1007/s40011-011-0016-7

Kaczmarek, B. (2020). Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials-A Minireview. Materials (Basel), 13(14), 3224. DOI: https://doi.org/10.3390/ma13143224

Kamanula, J. F., Belmain, S. R., Hall, D. R., Farman, D. I., et al. (2017). Chemical variation and insecticidal activity of Lippia javanica (Burm. f.) Spreng essential oil against Sitophilus zeamais Motschulsky. Industrial Crops and Products, 110, 75–82. DOI: https://doi.org/10.1016/j.indcrop.2017.06.036

Malik, S.K., Ahmad, M., & Khan, F. (2017). Qualtitative and quantitative estimation of terpenoid contents in some important plants of Punjab, Pakistan. Pakistan Journal of Science, 69(2),150.

Mandal, S., Patra, A., Samanta, A., Roy, S., Mandal, A., et al. (2013). Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pacific journal of tropical biomedicine, 3(12), 960–966. https://doi.org/10.1016/S2221-1691(13)60186-0. DOI: https://doi.org/10.1016/S2221-1691(13)60186-0

Mujeeb, F., Bajpai, P., & Pathak, N. (2014). Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed research international, 2014, 497606. https://doi.org/10.1155/2014/497606 DOI: https://doi.org/10.1155/2014/497606

Ndamba, J., Nyazema, N., Makaza, N., Anderson, C., & Kaondera, K. C. (1994). Traditional herbal remedies used for the treatment of urinary schistosomiasis in Zimbabwe. Journal of ethnopharmacology, 42(2), 125–132. https://doi.org/10.1016/0378-8741(94)90106-6 DOI: https://doi.org/10.1016/0378-8741(94)90106-6

Paul Bhattacharya, S., Mitra, A., Bhattacharya, A., & Sen, A. (2020). Quorum quenching activity of pentacyclic triterpenoids leads to inhibition of biofilm formation by Acinetobacter baumannii. Biofouling, 36(8), 922–937. https://doi.org/10.1080/ 08927014.2020.1831480 DOI: https://doi.org/10.1080/08927014.2020.1831480

RoyChowdhury, S., Haldar, S., Bhar, R., Das, S., Saha, A., Pal, K., Bandyopadhyay, S., & Paul, J. (2022). Pterocarpus angolensis: Botanical, Chemical and Pharmacological Review of an Endangered Medicinal Plant of India. Journal of Experimental Biology and Agricultural Sciences, 10(1), 150-156. DOI: https://doi.org/10.18006/2022.10(1).150.156

Saising, J., Maneenoon, K., Sakulkeo, O., Limsuwan, S., Götz, F., & Voravuthikunchai, S. P. (2022). Ethnomedicinal Plants in Herbal Remedies Used for Treatment of Skin Diseases by Traditional Healers in Songkhla Province, Thailand. Plants (Basel, Switzerland), 11(7), 880. https://doi.org/10.3390/plants11070880 DOI: https://doi.org/10.3390/plants11070880

Salleh, W. M. N. H. W., & Ahmad, F. (2017). Phytochemistry and biological activities of the Genus Knema (Myristicaceae). Pharmaceutical Sciences, 24(4), 249-255. DOI: https://doi.org/10.15171/PS.2017.37

Sheeja, T. E., Anju, P. R., Shalini, R. S., Siju, S., Dhanya, K., & Krishnamoorthy, B. (2013). RAPD, SCAR and conserved 18S rDNA markers for a red-listed and endemic medicinal plant species, Knema andamanica (Myristicaceae). Physiology and molecular biology of plants: an international journal of functional plant biology, 19(2), 245–250. https://doi.org/10.1007/s12298-013-0166-6 DOI: https://doi.org/10.1007/s12298-013-0166-6

Steenkamp, V., Mathivha, E., Gouws, M. C., & van Rensburg, C. E. (2004). Studies on antibacterial, antioxidant and fibroblast growth stimulation of wound healing remedies from South Africa. Journal of Ethnopharmacology, 95(2-3), 353–357. https://doi.org/10.1016/j.jep.2004.08.020 DOI: https://doi.org/10.1016/j.jep.2004.08.020

Supriya, R.H., & Sreekanth, G. B. (2021). Phytopharmacological review of Knema attenuata (Hook. F and Thoms) Warb. International Journal of Current Pharmaceutical Research, 13(3), 1–3. DOI: https://doi.org/10.22159/ijcpr.2021v13i3.42089

Wiart, C., Mogana, S., Khalifah, S., Mahan, M., Ismail, S., Buckle, M., Narayana, A. K., & Sulaiman, M. (2004). Antimicrobial screening of plants used for traditional medicine in the state of Perak, Peninsular Malaysia. Fitoterapia, 75(1), 68–73. https://doi.org/10.1016/j.fitote.2003.07.013 DOI: https://doi.org/10.1016/j.fitote.2003.07.013

Yang, Z., Li, L., Chen, C. H., Zhang, Y. Y., Yang, Y., Zhang, P., & Bao, G. H. (2022). Chemical composition and antibacterial activity of 12 medicinal plant ethyl acetate extracts using LC-MS feature-based molecular networking. Phytochemical analysis: PCA, 33(3), 473–489. https://doi.org/10.1002/pca.3103 DOI: https://doi.org/10.1002/pca.3103

Zaika, L. L. (1988). Spices and herbs: their antimicrobial activity and its determination. The Journal of Food Safety, 9, 97–118. DOI: https://doi.org/10.1111/j.1745-4565.1988.tb00511.x

Downloads

Published

2024-03-15

How to Cite

Bhar, R., Das, A., Haldar, S., & Paul, J. (2024). Analyzing the antimicrobial efficacy of the economically important tree Knema linifolia (Roxb.) Warb. Journal of Experimental Biology and Agricultural Sciences, 12(1), 145–152. https://doi.org/10.18006/2024.12(1).145.152

Issue

Section

PROCEEDING OF BIONEXT-2023_RESEARCH ARTICLES