Residue-specific orientation of arrestin in 5-HTR1B (Serotonin Receptor)- βArrestin-1 interaction

Authors

DOI:

https://doi.org/10.18006/2024.12(1).138.144

Keywords:

G protein-coupled receptor, Neurotensin receptor, β-Arrestin1, 5-HTR1B, 90 rotation, Tango assay

Abstract

Physiologically G protein-coupled receptors (GPCRs) are an important class of cell surface proteins capable of sensing the exogenous signals across the cell membrane through G-protein-dependent and independent pathways. Activated GPCRs initiate diverse G-protein-independent signalling through interaction with arrestin. Arrestins comprise a family of four proteins that act as signal regulators of GPCRs. Arrestin specificity and assembly orientation with a particular GPCR depend on the finger loop's residues. Recent cryo-EM structural elucidation of neurotensin receptor-1(NTSR1)-β-arrestin1complex reveals its striking difference from Rhodopsin-visual-Arrestin by a 90˚ rotation of β-Arrestin1 concerning the receptor. Alignment of neurotensin receptor 1(NTSR1)-β-Arrestin1 assembly with 5-HTR1B (Serotonin receptor) structure shows an ionic interaction mediated complex formation between receptor binding cleft and finger loop of arrestin. Mutational analysis of finger loop residues R65, D67, and D69 of β-Arrestin1 by tango assay confirms its possible interaction with an electropositive pocket of K79 and R161 in 5-HTR1B.

Author Biography

Kuntal Pal, School of Biosciences and Technology (SBST), Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India

Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata-700126, West Bengal, India.

References

Basith, S., Cui, M., Macalino, S. J. Y., Park, J., Clavio, N. A. B., Kang, S., & Choi, S. (2018). Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design. Frontiers in pharmacology, 9, 128. https://doi.org/10.3389/fphar.2018.00128 DOI: https://doi.org/10.3389/fphar.2018.00128

Berger, M., Gray, J. A., & Roth, B. L. (2009). The expanded biology of serotonin. Annual review of medicine, 60, 355–366. https://doi.org/10.1146/annurev.med.60.042307.110802 DOI: https://doi.org/10.1146/annurev.med.60.042307.110802

Gupta, D.O., Karbat, I., & Pal, K. (2023). Understanding the Molecular Regulation of Serotonin Receptor 5-HTR1B-β-Arrestin1 Complex in Stress and Anxiety Disorders. Journal of molecular neuroscience : MN, 73(7-8), 664–677. https://doi.org/10.1007/ s12031-023-02146-7 DOI: https://doi.org/10.1007/s12031-023-02146-7

Jean-Charles, P. Y., Kaur, S., & Shenoy, S. K. (2017). G Protein-Coupled Receptor Signaling Through β-Arrestin-Dependent Mechanisms. Journal of cardiovascular pharmacology, 70(3), 142–158. https://doi.org/10.1097/FJC.0000000000000482 DOI: https://doi.org/10.1097/FJC.0000000000000482

Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561-567. doi:10.1038/nature14656 DOI: https://doi.org/10.1038/nature14656

Kenakin T. P. (2012). Biased signalling and allosteric machines: new vistas and challenges for drug discovery. British journal of pharmacology, 165(6), 1659–1669. https://doi.org/10.1111/j.1476-5381.2011.01749.x DOI: https://doi.org/10.1111/j.1476-5381.2011.01749.x

Mandal, S., Chakrabarty, D., Bhattacharya, A., Paul, J., Haldar, S., & Pal, K. (2021). miRNA regulation of G protein-coupled receptor-mediated angiogenic pathways in cancer. Nucleus, 64, 303–315. https://doi.org/10.1007/s13237-021-00365-0 DOI: https://doi.org/10.1007/s13237-021-00365-0

McCorvy, J. D., & Roth, B. L. (2015). Structure and function of serotonin G protein-coupled receptors. Pharmacology & therapeutics, 150, 129–142. https://doi.org/10.1016/j.pharmthera.2015.01.009 DOI: https://doi.org/10.1016/j.pharmthera.2015.01.009

Reiter, E., Ahn, S., Shukla, A. K., & Lefkowitz, R. J. (2012). Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annual review of pharmacology and toxicology, 52, 179–197. https://doi.org/10.1146/ annurev.pharmtox.010909.105800 DOI: https://doi.org/10.1146/annurev.pharmtox.010909.105800

Sommer C. (2004). Serotonin in pain and analgesia: actions in the periphery. Molecular neurobiology, 30(2), 117–125. https://doi.org/10.1385/MN:30:2:117 DOI: https://doi.org/10.1385/MN:30:2:117

Wang, C., Jiang, Y., Ma, J., Wu, H., Wacker, D., et al. (2013). Structural basis for molecular recognition at serotonin receptors. Science, 340(6132), 610-614. doi:10.1126/science.1232807 DOI: https://doi.org/10.1126/science.1232807

Yang, D., Zhou, Q., Labroska, V., Qin, S., Darbalaei, S., et al. (2021). G protein-coupled receptors: structure- and function-based drug discovery. Signal transduction and targeted therapy, 6(1), 7. https://doi.org/10.1038/s41392-020-00435-w DOI: https://doi.org/10.1038/s41392-020-00435-w

Yang, L., Yang, D., de Graaf, C., Moeller, A., West, G.M., et al. (2015). Conformational states of the full-length glucagon receptor. Nature Communications, 6, 7859. https://doi.org/10.1038/ ncomms8859 DOI: https://doi.org/10.1038/ncomms8859

Yin, W., Li, Z., Jin, M., Yin, Y. L., de Waal, P. W., et al. (2019). A complex structure of arrestin-2 bound to a G protein-coupled receptor. Cell research, 29(12), 971–983. https://doi.org/10.1038/ s41422-019-0256-2 DOI: https://doi.org/10.1038/s41422-019-0256-2

Downloads

Published

2024-03-15

How to Cite

Bhattacharya, S., Paul, J., Haldar, S., & Pal, K. (2024). Residue-specific orientation of arrestin in 5-HTR1B (Serotonin Receptor)- βArrestin-1 interaction. Journal of Experimental Biology and Agricultural Sciences, 12(1), 138–144. https://doi.org/10.18006/2024.12(1).138.144

Issue

Section

PROCEEDING OF BIONEXT-2023_REVIEW ARTICLES