ARTIFICIAL INTELLIGENCE IN TACKLING CORONAVIRUS AND FUTURE PANDEMICS

Authors

DOI:

https://doi.org/10.18006/2024.12(1).124.137

Keywords:

AI, COVID-19, Artificial Intelligence, ML, Machine Learning

Abstract

SARS-COV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) was initially tested in Wuhan City, China, in December 2019 and had a devastating impact worldwide, exterminating more than 6 million people as of September 2022. It became the biggest worldwide health crisis since the 1918 influenza outbreak. Viruses generally mutate randomly, so predicting how SARS-CoV-2 will transform over the next few months or years and which forms will predominate is impossible. The possibilities for virus mutation, in theory, are practically endless. Enabling researchers to determine which antibodies have the potential to be most effective against existing and future variations could help machine learning to assist in drug discovery. In the COVID-19 pandemic, AI has benefited four key areas: diagnosis, clinical decision-making for public health, virtual assistance, and therapeutic research. This study conducted a discourse analysis and textual evaluation of AI (deep learning and machine learning) concerning the COVID-19 outbreak. Further, this study also discusses the latest inventions that can be very helpful in future pandemic detection. COVID-19 has already changed our lives, and in the future, we might be able to deal with pandemics like this with the help of AI. This review has also emphasized the legal implications of AI in the battle against COVID-19.

References

Agbo, C. C., Mahmoud, Q. H., & Eklund, J. M. (2019). Blockchain Technology in Healthcare: A Systematic Review. Healthcare (Basel), 7(2), 56. DOI: https://doi.org/10.3390/healthcare7020056

Ahlawat, C., & Krishnamurthi, R. (2022). Internet of Things-based smart helmet to detect possible COVID-19 infections. Cyber-Physical Systems, 15–36. https://doi.org/10.1016/B978-0-12-824557-6.00004-2 DOI: https://doi.org/10.1016/B978-0-12-824557-6.00004-2

Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., et al. (2020). Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, 296(2), E32–E40. https://doi.org/10.1148/radiol.2020200642 DOI: https://doi.org/10.1148/radiol.2020200642

Al Bassam, N., Hussain, S. A., Al Qaraghuli, A., Khan, J., Sumesh, E. P., & Lavanya, V. (2021). IoT based wearable device to monitor the signs of quarantined remote patients of COVID-19. Informatics in medicine unlocked, 24, 100588. DOI: https://doi.org/10.1016/j.imu.2021.100588

Albalawi, U., & Mustafa, M. (2022). Current Artificial Intelligence (AI) Techniques, Challenges, and Approaches in Controlling and Fighting COVID-19: A Review. International journal of environmental research and public health, 19(10), 5901 DOI: https://doi.org/10.3390/ijerph19105901

Aleem, A., Akbar Samad, A. B., & Vaqar, S. (2023). Emerging Variants of SARS-CoV-2 and Novel Therapeutics Against Coronavirus (COVID-19). In StatPearls. StatPearls Publishing.

Alimadadi, A., Aryal, S., Manandhar, I., Munroe, P. B., Joe, B., & Cheng, X. (2020). Artificial intelligence and machine learning to fight COVID-19. Physiological Genomics, 52(4), 200-202. DOI: https://doi.org/10.1152/physiolgenomics.00029.2020

Alkhodari, M., & Khandoker, A. H. (2022). Detection of COVID-19 in smartphone-based breathing recordings: A pre-screening deep learning tool. PLoS ONE, 17(1), e0262448. DOI: https://doi.org/10.1371/journal.pone.0262448

Allam, Z., Dey, G., & Jones, D. S. (2020). Artificial Intelligence (AI) Provided Early Detection of the Coronavirus (COVID-19) in China and Will Influence Future Urban Health Policy Internationally. AI, 1(2), 156-165. http://dx.doi.org/10.3390/ ai1020009. DOI: https://doi.org/10.3390/ai1020009

Alodat M. (2021). Using Deep Learning Model for Adapting and Managing COVID-19 Pandemic Crisis. Procedia computer science, 184, 558–564. DOI: https://doi.org/10.1016/j.procs.2021.03.070

Alqudah, A., M., Qazan, S., & Alqudah, A. (2020). Automated Systems for Detection of COVID-19 Using Chest X-ray Images and Lightweight Convolutional Neural Networks. Research Square. 47(1). https://doi.org/10.21203/rs.3.rs-24305/v1. DOI: https://doi.org/10.21203/rs.3.rs-24305/v1

Amelio, I., Gostev, M., Knight, R. A., Willis, A. E., Melino, G., & Antonov, A. V. (2014). DRUGSURV: a resource for repositioning of approved and experimental drugs in oncology based on patient survival information. Cell death & disease, 5(2), e1051. DOI: https://doi.org/10.1038/cddis.2014.9

Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Physical and engineering sciences in medicine, 43(2), 635–640. DOI: https://doi.org/10.1007/s13246-020-00865-4

Atherine J. I. (2021). Algorithmic Bias in Health Care Exacerbates Social Inequities — How to Prevent It. Retrieved from https://www.hsph.harvard.edu/ecpe/how-to-prevent-algorithmic-bias-in-health-care/ last accessed 24/01/2023

Azar, A. T., & El-Metwally, S. M. (2013). Decision tree classifiers for automated medical diagnosis. Neural Computing & Applications, 23 (7/8), 2387. DOI: 10.1007/s00521-012-1196-7. DOI: https://doi.org/10.1007/s00521-012-1196-7

Batra, R., Chan, H., Kamath, G., Ramprasad, R., Cherukara, M. J., & Sankaranarayanan, S. K. R. S. (2020). Screening of Therapeutic Agents for COVID-19 Using Machine Learning and Ensemble Docking Studies. The journal of physical chemistry letters, 11(17), 7058–7065. DOI: https://doi.org/10.1021/acs.jpclett.0c02278

Bervell, B., & Al-Samarraie, H. (2019). A comparative review of mobile health and electronic health utilization in sub-Saharan African countries. Social science & medicine (1982), 232, 1–16. https://doi.org/10.1016/j.socscimed.2019.04.024 DOI: https://doi.org/10.1016/j.socscimed.2019.04.024

Bouguelia, M., Nowaczyk, S., Santosh, K. C., & Verikas, A. (2018). Agreeing to disagree: Active learning with noisy labels without crowdsourcing. International Journal of Machine Learning & Cybernetics, 9(8), 1307–1319. DOI: https://doi.org/10.1007/s13042-017-0645-0

Braun, R., Catalani, C., Wimbush, J., & Israelski, D. (2013). Community health workers and mobile technology: a systematic review of the literature. PLoS One, 8(6), e65772. DOI: https://doi.org/10.1371/journal.pone.0065772

Butt, C., Gill, J., Chun, D., & Babu, B. A. (2020). Deep learning system to screen coronavirus disease 2019 pneumonia. Applied Intelligence, 53, https://academicworks.medicine.hofstra.edu/ articles/6359.. DOI: https://doi.org/10.1007/s10489-020-01714-3

Cao, Y., Li, L., Feng, Z., Wan, S., Huang, P., Sun, X., Wen, F., Huang, X., Ning, G., & Wang, W. (2020). Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell discovery, 6, 11. https://doi.org/10.1038/s41421-020-0147-1 DOI: https://doi.org/10.1038/s41421-020-0147-1

Chen, J., Wu, L., Zhang, J., Zhang, L., Gong, D., et al. (2020a). Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Scientific reports, 10(1), 19196. https://doi.org/10.1038/s41598-020-76282-0. DOI: https://doi.org/10.1038/s41598-020-76282-0

Chen, Y., Ouyang, L., Bao, F. S., Li, Q., Han, L. et al. (2020b). An interpretable machine learning framework for accurate severe vs non-severe covid-19 clinical type classification. Journal of Medical Internet Research doi: 10.2196/23948. DOI: https://doi.org/10.1101/2020.05.18.20105841

Cury, R. C., Megyeri, I., Lindsey, T., Macedo, R., Batlle, J., et al. (2021). Natural Language Processing and Machine Learning for Detection of Respiratory Illness by Chest CT Imaging and Tracking of COVID-19 Pandemic in the US. Radiology Cardiothoracic imaging, 3(1), e200596. https://doi.org/10.1148/ryct.2021200596. DOI: https://doi.org/10.1148/ryct.2021200596

Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94 DOI: https://doi.org/10.7861/futurehosp.6-2-94

Debnath, S., Barnaby, D. P., Coppa, K., Makhnevich, A., Kim, E. J., Chatterjee, S., et al. (2020). Machine learning to assist clinical decision-making during the COVID-19 pandemic. Bioelectronic medicine, 6, 14. https://doi.org/10.1186/s42234-020-00050-8 DOI: https://doi.org/10.1186/s42234-020-00050-8

Faris, H., Habib, M., Faris, M., Elayan, H., & Alomari, A. (2021). An intelligent multimodal medical diagnosis system based on patients’ medical questions and structured symptoms for telemedicine. Informatics in Medicine Unlocked, 23, 100513. https://doi.org/10.1016/j.imu.2021.100513. DOI: https://doi.org/10.1016/j.imu.2021.100513

Fast, E. & Chen, B. (2020). Potential T-cell and B-cell epitopes of 2019-nCoV. bioRxiv. Retrieved from 10.1101/2020.02.19.955484. DOI: https://doi.org/10.1101/2020.02.19.955484

Fong, S. J., Li, G., Dey, N., Crespo, R. G., & Herrera-Viedma, E. (2019). Finding an accurate early forecasting model from small dataset: A case of 2019-ncov novel coronavirus outbreak. International Journal of Interactive Multimedia and Artificial Intelligence, 6(1), 51–6. DOI: https://doi.org/10.9781/ijimai.2020.02.002

Gao, K., Nguyen, D. D., Chen, J., Wang, R., & Wei, G. W. (2020). Repositioning of 8565 Existing Drugs for COVID-19. The journal of physical chemistry letters, 11(13), 5373–5382. DOI: https://doi.org/10.1021/acs.jpclett.0c01579

Ge, Y.,Tian, T., Huang, S., et al. (2020). A data-driven drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. bioRxiv 986836 [Preprint]. Retrieved from https://www.biorxiv.org/content/10.1101/2020.03.11.986836v1 DOI: https://doi.org/10.1038/s41392-021-00568-6

Gns, H. S., Gr, S., Murahari, M., & Krishnamurthy, M. (2019). An update on Drug Repurposing: Re-written saga of the drug's fate. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 110, 700–716. https://doi.org/10.1016/ j.biopha.2018.11.127 DOI: https://doi.org/10.1016/j.biopha.2018.11.127

Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P.D., Zhang, H., et al. (2020). Rapid AI Development Cycle for the Coronavirus (COVID-19) Pandemic: Initial Results for Automated Detection & Patient Monitoring using Deep Learning CT Image Analysis. arXiv2003.05037. Retrieved From: https://arxiv.org/abs/2003.05037

Guhathakurata, S., Kundu, S., Chakraborty, A., & Banerjee, J. S. (2021). A novel approach to predict COVID-19 using support vector machine. Data Science for COVID-19, 351–364. https://doi.org/10.1016/B978-0-12-824536-1.00014-9 DOI: https://doi.org/10.1016/B978-0-12-824536-1.00014-9

Guo, Q., Li, M.,Wang, C., Wang, P., Fang, Z., et al. (2019). Host and infectivity prediction of wuhan 2019 novel coronavirus using deep learning algo- rithm. bioRxiv, 914044 [Preprint]. Retrieved from https://www.researchgate.net/publication/338821819_Host_ and_infectivity_prediction_of_Wuhan_2019_novel_coronavirus_using_deep_learning_algorithm. DOI: https://doi.org/10.1101/2020.01.21.914044

Jin, C., Chen, W., Cao, Y., Xu, Z.,Tan, Z., et al. (2020). Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nature Communications, 11, 5088. https://doi.org/10.1038/s41467-020-18685-1. DOI: https://doi.org/10.1038/s41467-020-18685-1

Justice, K.S. Puttaswamy (Retd.) & Anr. vs. UOI & Ors [(2017) 10 SCC 1, https://main.sci.gov.in/supremecourt/2012/35071/35071_ 2012_Judgement_26-Sep-2018.pdf

Ke, Y. Y., Peng, T. T., Yeh, T. K., Huang, W. Z., Chang, S. E., et al. (2020). Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomedical journal, 43(4), 355–362. https://doi.org/10.1016/j.bj.2020.05.001 DOI: https://doi.org/10.1016/j.bj.2020.05.001

Khan, Z. H., Siddique, A., & Lee, C. W. (2020). Robotics Utilization for Healthcare Digitization in Global COVID-19 Management. International journal of environmental research and public health, 17(11), 3819. https://doi.org/10.3390/ ijerph17113819 DOI: https://doi.org/10.3390/ijerph17113819

Khera, R., Liu, Y., de Lemos, J. A., Das, S. R., Pandey, A., et al. (2021). Association of COVID-19 Hospitalization Volume and Case Growth at US Hospitals with Patient Outcomes. The American journal of medicine, 134(11), 1380–1388.e3. https://doi.org/10.1016/j.amjmed.2021.06.034 DOI: https://doi.org/10.1016/j.amjmed.2021.06.034

Kotter, E., & Ranschaert, E. (2021). Challenges and solutions for introducing artificial intelligence (AI) in daily clinical workflow. European radiology, 31(1), 5–7. DOI: https://doi.org/10.1007/s00330-020-07148-2

Kuupiel, D., Bawontuo, V., & Mashamba-Thompson, T. P. (2017). Improving the Accessibility and Efficiency of Point-of-Care Diagnostics Services in Low- and Middle-Income Countries: Lean and Agile Supply Chain Management. Diagnostics (Basel, Switzerland), 7(4), 58. https://doi.org/10.3390/diagnostics7040058 DOI: https://doi.org/10.3390/diagnostics7040058

Lee, D., & Yoon, S. N. (2021). Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. International journal of environmental research and public health, 18(1), 271. https://doi.org/10.3390/ijerph18010271 DOI: https://doi.org/10.3390/ijerph18010271

Li, W. T., Ma, J., Shende, N., Castaneda, G., Chakladar, J., Tsai, J. C., et al. (2020). Using machine learning of clinical data to diagnose COVID-19: a systematic review and meta-analysis. BMC medical informatics and decision making, 20(1), 247. https://doi.org/10.1186/s12911-020-01266-z DOI: https://doi.org/10.1186/s12911-020-01266-z

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy (Basel, Switzerland), 23(1), 18. https://doi.org/10.3390/e23010018 DOI: https://doi.org/10.3390/e23010018

Makhudu, S.J., Kuupiel, D., Gwala, N., & Mashamba-Thompson, T. (2019). The Use of Patient Self-Testing in Low- and Middle-Income Countries: A Systematic Scoping Review. Point of Care: The Journal of Near-Patient Testing & Technology, 18, 9–16. DOI: https://doi.org/10.1097/POC.0000000000000179

Marbouh, D., Abbasi, T., Maasmi, F., Omar, I. A., Debe, M. S., et al. (2020). Blockchain for COVID-19: Review, Opportunities, and a Trusted Tracking System. Arabian journal for science and engineering, 45(12), 9895–9911. DOI: https://doi.org/10.1007/s13369-020-04950-4

Mashamba-Thompson, T. P. & Crayton, E. D. (2020). Blockchain and Artificial Intelligence Technology for Novel Coronavirus Disease-19 Self-Testing. Diagnostics (Basel), 10(4), 198. DOI: https://doi.org/10.3390/diagnostics10040198

Metsky, H. C., Freije, C. A., Kosoko-Thoroddsen, T. S. F., Sabeti, P. C. & Myhrvold, C. (2020). CRISPR-based surveillance for COVID-19 using genomically-comprehensive machine learning design. Biorxiv preprint. https://doi.org/10.1101/2020.02.26.96702 DOI: https://doi.org/10.1101/2020.02.26.967026

Ministry of Electronics & Information Technology, Government of India, (2023). https://www.meity.gov.in/artificial-intelligence-committees-reports last accessed 24/01/2023

Mishra, T., Wang, M., Metwally, A. A., Bogu, G. K., Brooks, A. W., Bahmani, A., et al. (2020). Pre-symptomatic detection of COVID-19 from smartwatch data. Nature biomedical engineering, 4(12), 1208–1220. https://doi.org/10.1038/s41551-020-00640-6 DOI: https://doi.org/10.1038/s41551-020-00640-6

Miyake, S., Higurashi, T., Kato, H., Yamaoka, Y., Kessoku, T., et al. (2021). Evaluation of a combination protocol of CT-first triage and active telemedicine methods by a selected team tackling COVID-19: An experimental research study. Journal of infection and public health, 14(9), 1212–1217. https://doi.org/10.1016/ j.jiph.2021.08.016 DOI: https://doi.org/10.1016/j.jiph.2021.08.016

Mohanty, S., Harun Ai Rashid, M., Mridul, M., Mohanty, C., & Swayamsiddha, S. (2020). Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes & metabolic syndrome, 14(5), 1027–1031. https://doi.org/10.1016/j.dsx.2020.06.068 DOI: https://doi.org/10.1016/j.dsx.2020.06.068

Moore, J. H., Barnett, I., Boland, M. R., Chen, Y., Demiris, G., Gonzalez-Hernandez, G., et al. (2020). Ideas for how informaticians can get involved with COVID-19 research. BioData mining, 13, 3. https://doi.org/10.1186/s13040-020-00213-y DOI: https://doi.org/10.1186/s13040-020-00213-y

Moreno, H. (2020). The Importance of Data Quality-Good, Bad or Ugly. Forbes. Retrieved from: https://www.forbes.com/sites/ forbesinsights/2017/06/05/the-importance-of-data-quality-good-bad-or-ugly/#614a247a10c4

Mousavizadeh, L., & Ghasemi, S. (2021). Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi, 54(2), 159–163. DOI: https://doi.org/10.1016/j.jmii.2020.03.022

Naudé, W. (2020). Artificial intelligence vs COVID-19: limitations, constraints and pitfalls. AI & society, 35(3), 761–765. https://doi.org/10.1007/s00146-020-00978-0 DOI: https://doi.org/10.1007/s00146-020-00978-0

Office Memorandum, Ministry of Electronics & Information Technology, Government of India (2018). https://www.meity.gov.in/writereaddata/files/constitution_of_four_committees_on_artificial_intelligence.pdf last accessed 24/01/2023

Ong, E., Wong, M. U., Huffman, A., & He, Y. (2020). COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning. Frontiers in immunology, 11, 1581. https://doi.org/10.3389/fimmu.2020.01581 DOI: https://doi.org/10.3389/fimmu.2020.01581

Panwar, H., Gupta, P. K., Siddiqui, M. K., Morales-Menendez, R., & Singh, V. (2020). Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos, solitons, and fractals, 138, 109944. DOI: https://doi.org/10.1016/j.chaos.2020.109944

Pinzi, L., & Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18), 4331. DOI: https://doi.org/10.3390/ijms20184331

Prachar, M., Justesen, S., Steen-Jensen, D. B., Thorgrimsen, S., Jurgons, E., Winther, O., & Bagger, F. O. (2020). Identification and validation of 174 COVID-19 vaccine candidate epitopes reveals low performance of common epitope prediction tools. Scientific reports, 10(1), 20465. https://doi.org/10.1038/s41598-020-77466-4 DOI: https://doi.org/10.1038/s41598-020-77466-4

Randhawa, G. S., Soltysiak, M. P. M., El Roz, H., de Souza, C. P. E., Hill, K. A., & Kari, L. (2020). Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study. bioRxiv 932350 [Preprint]. Retrieved from: https://www.biorxiv.org/content/10.1101/2020.02.03.932350v3. DOI: https://doi.org/10.1101/2020.02.03.932350

Regla-Nava, J. A., Nieto-Torres, J. L., Jimenez-Guardeño, J. M., Fernandez-Delgado, R., Fett, C., et al. (2015). Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. Journal of virology, 89(7), 3870–3887. https://doi.org/10.1128/JVI.03566-14 DOI: https://doi.org/10.1128/JVI.03566-14

Report of committee – D on cyber security, safety, Legal and ethical issues, Ministry of Electronics & Information Technology, Government of India (2023). Retrieved from https://www.meity.gov.in/writereaddata/files/Committes_D-Cyber-n-Legal-and-Ethical.pdf last accessed 24/01/2023

Rezaei, N., & Grandner, M. A. (2021). Changes in sleep duration, timing, and variability during the COVID-19 pandemic: Large-scale Fitbit data from 6 major US cities. Sleep Health, 7(3), 303–313. DOI: https://doi.org/10.1016/j.sleh.2021.02.008

Salama, M. A., Hassanien, A. E., & Mostafa, A. (2016). The prediction of virus mutation using neural networks and rough set techniques. EURASIP journal on bioinformatics & systems biology, 2016 (1), 10. https://doi.org/10.1186/s13637-016-0042-0. DOI: https://doi.org/10.1186/s13637-016-0042-0

Sammut, C., & Webb, G.I. (Eds.) (2017). Encyclopedia of machine learning and datamining. 2nd edn, Springer, Boston, MA. DOI: https://doi.org/10.1007/978-1-4899-7687-1

Santosh K. C. (2020). AI-Driven Tools for Coronavirus Outbreak: Need of Active Learning and Cross-Population Train/Test Models on Multitudinal/Multimodal Data. Journal of medical systems, 44(5), 93. https://doi.org/10.1007/s10916-020-01562-1 DOI: https://doi.org/10.1007/s10916-020-01562-1

Seshadri, D. R., Davies, E. V., Harlow, E. R., Hsu, J. J., Knighton, S. C., Walker, T. A., Voos, J. E., & Drummond, C. K. (2020). Wearable Sensors for COVID-19: A Call to Action to Harness Our Digital Infrastructure for Remote Patient Monitoring and Virtual Assessments. Frontiers in digital health, 2, 8. https://doi.org/10.3389/fdgth.2020.00008 DOI: https://doi.org/10.3389/fdgth.2020.00008

Singh, G.A.P., & Gupta, P. (2019). Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans. Neural Computing and Applications, 31(10), 6863–6877. DOI: https://doi.org/10.1007/s00521-018-3518-x

Summers, R.M. (2021). Artificial Intelligence of COVID-19 Imaging: A Hammer in Search of a Nail. Radiology, 298 (3), E162-E164. DOI: https://doi.org/10.1148/radiol.2020204226

Tayfur, İ., & Afacan, M. A. (2019). Reliability of smartphone measurements of vital parameters: A prospective study using a reference method. The American journal of emergency medicine, 37(8), 1527–1530. DOI: https://doi.org/10.1016/j.ajem.2019.03.021

Teo J. (2020). Early Detection of Silent Hypoxia in Covid-19 Pneumonia Using Smartphone Pulse Oximetry. Journal of medical systems, 44(8), 134. DOI: https://doi.org/10.1007/s10916-020-01587-6

Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes & metabolic syndrome, 14(4), 337–339. DOI: https://doi.org/10.1016/j.dsx.2020.04.012

Wadden J. J. (2021). Defining the undefinable: the black box problem in healthcare artificial intelligence. Journal of medical ethics, 48 (10),107529. https://doi.org/10.1136/medethics-2021-107529. DOI: https://doi.org/10.1136/medethics-2021-107529

Wang. Y., Hu. M., Li, Q., Zhang, X.P., Zhai, G., & Yao, N. (2020). Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner. arXiv2002.05534 [Preprint]. Retrieved From: https://arxiv.org/abs/2002.05534

Webster P. (2020). Virtual health care in the era of COVID-19. Lancet, 395(10231), 1180-1181. DOI: https://doi.org/10.1016/S0140-6736(20)30818-7

WHO. (2019). Telemedicine: Opportunities and Developments in Member State. https://www.afro.who.int/publications/ telemedicine-opportunities-and-developments-member-state

Wurzer, D., Spielhagen, P., Siegmann, A., Gercekcioglu, A., Gorgass, J., et al. (2021). Remote monitoring of COVID-19 positive high-risk patients in domestic isolation: A feasibility study. PloS one, 16(9), e0257095. https://doi.org/10.1371/ journal.pone.0257095 DOI: https://doi.org/10.1371/journal.pone.0257095

Yan, L., Zhang, H-T., Xiao, Y., Wang, M., Guo, Y., et al. (2020). Prediction of survival for severe Covid-19 patients with three clinical features: development of a machine learning-based prognostic model with clinical data in Wuhan. medRxiv 20028027 [Preprint]. Retrieved from: https://www.medrxiv.org/content/ 10.1101/2020.02.27.20028027v3.

Zampieri, F. G., Costa, E. L., Iwashyna, T. J., Carvalho, C. R. R., Damiani, L. P., Taniguchi, L. U., Amato, M. B. P., Cavalcanti, A. B., & Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial Investigators (2019). Heterogeneous effects of alveolar recruitment in acute respiratory distress syndrome: a machine learning reanalysis of the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial. British journal of anaesthesia, 123(1), 88–95. https://doi.org/10.1016/j.bja.2019.02.026 DOI: https://doi.org/10.1016/j.bja.2019.02.026

Zeng, X., Song, X., Ma, T., Pan, X., Zhou, Y., et al. (2020). Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning. Journal of proteome research, 19(11), 4624–4636. https://doi.org/10.1021/acs.jproteome.0c00316. DOI: https://doi.org/10.1021/acs.jproteome.0c00316

Zhang, H., Saravanan, K. M., Yang, Y., Hossain, M. T., Li, J., Ren, X., Pan, Y., & Wei, Y. (2020). Deep Learning Based Drug Screening for Novel Coronavirus 2019-nCov. Interdisciplinary sciences, computational life sciences, 12(3), 368–376. https://doi.org/10.1007/s12539-020-00376-6. DOI: https://doi.org/10.1007/s12539-020-00376-6

Zhang, Q., Xie, Q., & Wang, G. (2016). A Survey on Rough Set Theory and Its Applications. CAAI Transactions on Intelligence Technology, 1(4), 323-333. DOI: https://doi.org/10.1016/j.trit.2016.11.001

Zhavoronkov, A., Aladinskiy, V., Zhebrak, A. et al. (2020). Potential COVID-2019 3C-like Protease Inhibitors Designed Using Generative Deep Learning Approaches. Insilico Med Hong Kong Ltd A. 307, E1. DOI: https://doi.org/10.26434/chemrxiv.11829102

Downloads

Published

2024-03-15

How to Cite

Quazi, S., Singh, S. K., Saha, R. P., Das, A., & Singh, M. K. (2024). ARTIFICIAL INTELLIGENCE IN TACKLING CORONAVIRUS AND FUTURE PANDEMICS. Journal of Experimental Biology and Agricultural Sciences, 12(1), 124–137. https://doi.org/10.18006/2024.12(1).124.137

Issue

Section

PROCEEDING OF BIONEXT-2023_REVIEW ARTICLES