Influence of particle size fraction and bioactive compound contents on the biological activities of Solanum torvum L. leaf powder extracts

Authors

  • ASSIENE AGAMOU Julien Armel Department of Home Economics, Advanced Teacher’s Training College for Technical Education, University of Douala, 24 157 Douala, Cameroon. https://orcid.org/0000-0002-9655-0116
  • DJEUKEU ASONGNI William Department of Home Economics, Advanced Teacher’s Training College for Technical Education, University of Douala, 24 157 Douala, Cameroon. https://orcid.org/0000-0001-7517-0846
  • ASSIENE OYONG Damase Serge Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, 2701 Douala, Cameroon https://orcid.org/0009-0001-6564-2798
  • TIZE Zra Department of Chemical Engineering, Advanced Teacher’s Training College for Technical Education, University of Douala, 24 157 Douala, Cameroon https://orcid.org/0009-0006-7512-7550
  • OBONO NDONG Tatiana Léa Department of Home Economics, Advanced Teacher’s Training College for Technical Education, University of Douala, 24 157 Douala, Cameroon. https://orcid.org/0009-0006-8757-3582
  • MBANGO EKE Pauline Department of Home Economics, Advanced Teacher’s Training College for Technical Education, University of Douala, 24 157 Douala, Cameroon. https://orcid.org/0009-0005-7462-4136
  • MBOUBE NGONGANG Oriane Department of Home Economics, Advanced Teacher’s Training College for Technical Education, University of Douala, 24 157 Douala, Cameroon. https://orcid.org/0009-0003-9372-5640
  • KEUBING FEUDJIO Suzanne Rose Department of Home Economics, Advanced Teacher’s Training College for Technical Education, University of Douala, 24 157 Douala, Cameroon. https://orcid.org/0009-0008-5648-2754
  • FONGNZOSSIE FEDOUNG Evariste Department of Home Economics, Advanced Teacher’s Training College for Technical Education, University of Douala, 24 157 Douala, Cameroon. https://orcid.org/0000-0002-7860-466X

DOI:

https://doi.org/10.18006/2024.12(2).203.217

Keywords:

Solanum torvum leaves powders, Particle size fractions, Extracts, Bioactive compounds, Biological activities

Abstract

This study investigates the bioactive compound content and biological activities of raw powder extracts and particle size fractions from Solanum torvum leaves. The leaves, harvested from Douala, were processed into powders and subsequently divided into different fractions. Methanolic extracts of these powders were analyzed for their content of bioactive compounds (total polyphenols, total flavonoids, and condensed tannins), antioxidant (DPPH, ABTS, FRAP assays), and antimicrobial (bacterial and fungal) activities. The particle size fraction of 250-400 µm constitutes the largest proportion (33.41%) of the raw powder. The highest contents of bioactive compounds are found in the 200-250, 400-500, and < 125 µm fractions for total polyphenols (44.62 ± 0.19 mg GEA/100 ml extract), total flavonoids (14.47 ± 0.37 mg QE/100 ml extract), and condensed tannins (22.79 ± 0.12 mg CE/100 ml extract), respectively. The antioxidant activity of extracts from 500-800µm fraction improved their DPPH and ABTS assays by 31.50% and 40.44% compared to the raw powder. The same fraction (500-800 µm) and the raw powder extracts demonstrated bactericidal activities, while the 125-200, 200-250, and ≥ 800 µm fraction extracts exhibited moderate and significant antifungal activities against several bacterial and fungal strains, respectively. These biological activities are primarily attributed to the average flavonoid contents, which become more accessible in extracts after fractionation. This method of processing powder suggests that no plant powder should be disregarded or rejected due to its low content of bioactive compounds.

Author Biographies

ASSIENE AGAMOU Julien Armel, Department of Home Economics, Advanced Teacher’s Training College for Technical Education, University of Douala, 24 157 Douala, Cameroon.

Department of Food Science and Nutrition, National School of Agro-industrial Sciences, Ngaoundere, University of Ngaoundere, 455 Ngaoundere, Adamawa Region, Cameroon

DJEUKEU ASONGNI William, Department of Home Economics, Advanced Teacher’s Training College for Technical Education, University of Douala, 24 157 Douala, Cameroon.

Department of Biochemistry, Faculty of Sciences, University of Douala, 24 157 Douala, Cameroon

ASSIENE OYONG Damase Serge, Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, 2701 Douala, Cameroon

Department of Biology, Higher Institute of Medical Technology, Yaoundé, 188 Yaoundé, Cameroon

TIZE Zra, Department of Chemical Engineering, Advanced Teacher’s Training College for Technical Education, University of Douala, 24 157 Douala, Cameroon

Department of Chemistry, Faculty of Sciences, University of Douala, 24 157 Douala, Cameroon

FONGNZOSSIE FEDOUNG Evariste, Department of Home Economics, Advanced Teacher’s Training College for Technical Education, University of Douala, 24 157 Douala, Cameroon.

Cameroon Ethnobotany Network. PO Box 8038 Yaoundé, Cameroon

Laboratory of Botany, University of Yaoundé 1, PO Box 812 Yaoundé, Cameroon

References

Acharyya, S., & Khatun, B. (2018). Antimicrobial and analgesic activity of Solanum torvum. Haya: The Saudi Journal of Life Sciences, 3(6), 459–464. https://doi.org/10.21276/haya.2018.3.6.2

Assiéné, A. J. A., Fombang, N. E., & Mbofung, C. M. (2021). Influence of Compounds Contents and Particle Size on Some Functional Properties of Moringa oleifera Leaves (Lam) Powders. Asian Food Science Journal, 20(1), 60–71. https://doi.org/10.9734/afsj/2021/v20i130255 DOI: https://doi.org/10.9734/afsj/2021/v20i130255

Bahar, B. G., & Khalili, M. (2015). Particle size analysis on wide size distribution powders; Effect of sampling and characterization technique. Advanced Powder Technology, 26(1), 200–207. https://doi.org/10.1016/j.apt.2014.09.009 DOI: https://doi.org/10.1016/j.apt.2014.09.009

Boateng, L., Nortey, E., Ohemeng, A. N., Asante, M., & Steiner-Asiedu, M. (2019). Sensory attributes and acceptability of complementary foods fortified with Moringa oleifera leaf powder. Nutrition and Food Science, 49(3), 393–406. https://doi.org/10.1108/NFS-07-2018-0192 DOI: https://doi.org/10.1108/NFS-07-2018-0192

Borokini, F. B., Oladipo, G. O., Komolafe, O. Y., & Ajongbolo, K. F. (2022). Phytochemical, nutritional and antioxidant properties of Abelmoschus esculentus Moench L leaf: A pointer to its fertility potentials. Measurement: Food, 6, 100034. https://doi.org/10.1016/j.meafoo.2022.100034 DOI: https://doi.org/10.1016/j.meafoo.2022.100034

Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10 (3), 178–182. https://doi.org/10.38212/2224-6614.2748 DOI: https://doi.org/10.38212/2224-6614.2748

Deli, M., Djantou, B. E., Nguimbou, R. M., Njintang, Y. N., & Scher, J. (2020). Micronutrients and in vivo antioxidant properties of powder fractions and ethanolic extract of Dichrostachys glomerata Forssk . fruits. Food Science & Nutrition, 8, 3287–3297. https://doi.org/10.1002/fsn3.1606 DOI: https://doi.org/10.1002/fsn3.1606

Deli, M., Ndjantou, E. B., Ngatchic Metsagang, J. T., Petit, J., Njintang Yanou, N., & Scher, J. (2019). Successive grinding and sieving as a new tool to fractionate polyphenols and antioxidants of plants powders: Application to Boscia senegalensis seeds, Dichrostachys glomerata fruits, and Hibiscus sabdariffa calyx powders. Food Science and Nutrition, 7(5), 1795–1806. https://doi.org/10.1002/fsn3.1022 DOI: https://doi.org/10.1002/fsn3.1022

Djoueudam, F. G., Fowa, A. B., Fodouop, S. P. C., Kodjio, N., & Gatsing, D. (2019). Solanum torvum Sw. (Solanaceae): Phytochemical screening, antisalmonellal and antioxidant properties of leaves extracts. Journal of Medicinal Plants Studies, 7(1), 5–12.

Dongmo, W., Tsopgni, T., Rosette, F., Essoung, E., Kuetche, M., et al. (2023). Bioactive constituents from Flacourtia vogelii Hook.f. (Flacourtiaceae). Natural Product Research, 37(24), 188–198. https://doi.org/10.1080/14786419.2023.2177287 DOI: https://doi.org/10.1080/14786419.2023.2177287

Fombang, E. N., & Saa, R. W. (2016). Antihyperglycemic Activity of Moringa oleifera Lam Leaf Functional Tea in Rat Models and Human Subjects. Food and Nutrition Sciences, 7, 1021–1032. https://doi.org/10.4236/fns.2016.711099 DOI: https://doi.org/10.4236/fns.2016.711099

Galla, N. R., Pamidighantam, P. R., Karakala, B., Gurusiddaiah, M. R., & Akula, S. (2017). Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). International Journal of Gastronomy and Food Science, 7, 20–26. https://doi.org/10.1016/j.ijgfs.2016.12.003 DOI: https://doi.org/10.1016/j.ijgfs.2016.12.003

Gong, X., Li, X., Xia, Y., Xu, J., Li, Q., Zhang, C., & Li, M. (2020). Effects of phytochemicals from plant-based functional foods on hyperlipidemia and their underpinning mechanisms. Trends in Food Science and Technology, 103, 304–320. https://doi.org/10.1016/j.tifs.2020.07.026 DOI: https://doi.org/10.1016/j.tifs.2020.07.026

Guerriero, G., Berni, R., Muñoz-Sanchez, J. A., Apone, F., Abdel-Salam, E. M., et al. (2018). Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes, 9(6) 309, 1–22. https://doi.org/10.3390/genes9060309 DOI: https://doi.org/10.3390/genes9060309

Jan, S., Iram, S., Bashir, O., Shah, S. N., Kamal, M. A., Rahman, S., Kim, J., & Jan, A. T. (2024). Unleashed Treasures of Solanaceae: Mechanistic Insights into Phytochemicals with Therapeutic Potential for Combatting Human Diseases. Plants, 13, 724. https://doi.org/10.3390/plants13050724 DOI: https://doi.org/10.3390/plants13050724

Jucá, M. M., Cysne Filho, F. M. S., de Almeida, J. C., Mesquita, D. da S., Barriga, J. R. de M., et al. (2020). Flavonoids: biological activities and therapeutic potential. Natural Product Research, 34(5), 692–705. https://doi.org/10.1080/14786419.2018.1493588 DOI: https://doi.org/10.1080/14786419.2018.1493588

Kuete, V., Ngameni, B., Mbaveng, A. T., Ngadjui, B., Meyer, J. J. M., & Lall, N. (2010). Evaluation of flavonoids from Dorstenia barteri for their antimycobacterial , antigonorrheal and anti-reverse transcriptase activities. Acta Tropica, 116 (1), 100–104. https://doi.org/10.1016/j.actatropica.2010.06.005 DOI: https://doi.org/10.1016/j.actatropica.2010.06.005

Kumar, S., & Pandey, A. K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview Shashank. The Scientific World Journal, 2013, 353–374. https://doi.org/http://dx.doi.org/10.1155/2013/162750 DOI: https://doi.org/10.1155/2013/162750

Loganayaki, N., Siddhuraju, P., & Manian, S. (2010). Antioxidant activity of two traditional Indian vegetables: Solanum nigrum L. and Solanum torvum L. Food Science and Biotechnology, 19(1), 121–127. https://doi.org/10.1007/s10068-010-0017-y DOI: https://doi.org/10.1007/s10068-010-0017-y

Maizuwo, A. I., Hassan, A. S., Momoh, H., & Muhammad, J. A. (2017). Phytochemical Constituents, Biological Activities, Therapeutic Potentials and Nutritional Values of Moringa oleifera (Zogale): A Review. Journal of Drug Design and Medicinal Chemistry, 3(4), 60. https://doi.org/10.11648/j.jddmc.20170304.12 DOI: https://doi.org/10.11648/j.jddmc.20170304.12

Makkar, H. P. S., Siddhuraju, P., & Becker, K. (2007). Plant secondary metabolites. Humana Press Inc., Totowa, New Jersey 07512. DOI: https://doi.org/10.1007/978-1-59745-425-4

Melcion, J. P. (2000). La granulométrie de l’aliment: Principe, mesure et obtention. Productions Animales, 13(2), 81–97. https://doi.org/10.20870/productions-animales.2000.13.2.3770 DOI: https://doi.org/10.20870/productions-animales.2000.13.2.3770

Meng, Q., Chen, F., Xiao, T., & Zhang, L. (2019). Superfine grinding of Dendrobium officinale: the finer the better? International Journal of Food Science and Technology, 54(6), 2199–2208. https://doi.org/10.1111/ijfs.14129 DOI: https://doi.org/10.1111/ijfs.14129

Murugesan, R., Vasuki, K., & Kaleeswaran, B. (2024). A green alternative: Evaluation of Solanum torvum (Sw.) leaf extract for control of Aedes aegypti (L.) and its molecular docking potential. Intelligent Pharmacy, 2(2024), 251–262. https://doi.org/https://doi.org/10.1016/j.ipha.2023.11.012 DOI: https://doi.org/10.1016/j.ipha.2023.11.012

Nabil, B., Ouaabou, R., Ouhammou, M., Saadouni, L., & Mahrouz, M. (2020). Impact of particle size on functional, physicochemical properties and antioxidant activity of cladode powder (Opuntia ficus-indica). Journal of Food Science and Technology, 57(3), 943–954. https://doi.org/10.1007/s13197-019-04127-4 DOI: https://doi.org/10.1007/s13197-019-04127-4

Newton, S. M., Lau, C., Gurcha, S. S., Besra, G. S., & Wright, C. W. (2002). The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis. Journal of Ethnopharmacology, 79(1), 57–67. https://doi.org/10.1016/S0378-8741(01)00350-6 DOI: https://doi.org/10.1016/S0378-8741(01)00350-6

Nouman, W., Anwar, F., Gull, T., Newton, A., Rosa, E., & Domínguez-Perles, R. (2016). Profiling of polyphenolics, nutrients and antioxidant potential of germplasm’s leaves from seven cultivars of Moringa oleifera Lam. Industrial Crops and Products, 83, 166–176. https://doi.org/10.1016/j.indcrop.2015.12.032 DOI: https://doi.org/10.1016/j.indcrop.2015.12.032

Ogboru, R., Okolie, P., & Agboje, I. (2015). Phytochemical Screening and Medicinal Potentials of the Bark of Dacryodes edulis (G. Don) HJ Lam. Environmental Analytical Chemistry, 2(5), 2–4. https://doi.org/10.4172/2380-2391.1000158 DOI: https://doi.org/10.4172/2380-2391.1000158

Osei-Owusu, J., Kokro, K. B., Ofori, A., Apau, J., Dofuor, A. K., et al. (2023). Evaluation of phytochemical, proximate, antioxidant, and anti-nutrient properties of Corchorus olitorius, Solanum macrocarpon and Amaranthus cruentus in Ghana. International Journal of Biochemistry and Molecular Biology, 14(2), 17–24.

Ozcan, T., Akpinar-Bayizit, A., Yilmaz-Ersan, L., & Delikanli, B. (2014). Phenolics in Human Health. International Journal of Chemical Engineering and Applications, 5(5), 393–396. https://doi.org/10.7763/ijcea.2014.v5.416 DOI: https://doi.org/10.7763/IJCEA.2014.V5.416

Padmaja, M., Sravanthi, M., & Hemalatha, K. P. J. (2011). Evaluation of Antioxidant Activity of Two Indian Medicinal Plants. Journal of Phytology, 3(3), 86–91.

Prithvira, K. (2019). Biological Activities of Flavonoids: an Overview. International Journal of Pharmaceutical Sciences and Research, 10(4), 1567–1574. https://doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74 DOI: https://doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74

Rajapaksha, R. P. A. D., & Premathilake, M. M. S. N. (2020). Comparison of Antimicrobial , Antioxidant and Total Phenolic Content of Leaves of Solanum torvum , Solanum incanum , Solanum violaceum Grown in Two Different Areas of Sri Lanka. Proceedings of the International Research Conference of Uva Wellassa University, 29–30, 2020.

Ramamurthy, C. H., Kumar, M. S., Suyavaran, V. S. A., Mareeswaran, R., & Thirunavukkarasu, C. (2012). Evaluation of Antioxidant, Radical Scavenging Activity and Polyphenolics Profile in Solanum torvum L. Fruits. Journal of Food Science, 77(8), 907–913. https://doi.org/10.1111/j.1750-3841.2012.02830.x DOI: https://doi.org/10.1111/j.1750-3841.2012.02830.x

Ravani, A., Damle, K., Prasad, R. V, & Joshi, D. C. (2018). Profiling of polyphenols, antioxidants potential, nutrients and flavor compounds of Moringa oleifera pods (var. PKM-1). International Journal of Chemical Studies, 6(5), 1571–1575.

Rodriguez, I. F., Pérez, M. J., Cattaneo, F., Zampini, I. C., Cuello, A. S., Mercado, M. I., Ponessa, G., & Isla, M. I. (2019). Morphological, histological, chemical and functional characterization of Prosopis alba flours of different particle sizes. Food Chemistry, 274, 583–591. https://doi.org/10.1016/ j.foodchem.2018.09.024 DOI: https://doi.org/10.1016/j.foodchem.2018.09.024

Senizza, B., Rocchetti, G., Sinan, K. I., Zengin, G., Mahomoodally, M. F., et al. (2021). The phenolic and alkaloid profiles of Solanum erianthum and Solanum torvum modulated their biological properties. Food Bioscience, 41(2021), 100974. https://doi.org/10.1016/j.fbio.2021.100974 DOI: https://doi.org/10.1016/j.fbio.2021.100974

Siekmans, K., Bégin, F., Situma, R., & Kupka, R. (2017). The potential role of micronutrient powders to improve complementary feeding practices. Maternal and Child Nutrition, 13(S2), e12464. https://doi.org/https://doi.org/10.1111/mcn.12464 DOI: https://doi.org/10.1111/mcn.12464

Tao, H., Cui, B., Zhang, H., Bekhit, A. E. D., & Lu, F. (2019). Identification and characterization of flavonoids compounds in cassava leaves (Manihot esculenta Crantz) by HPLC/FTICR-MS. International Journal of Food Properties, 22(1), 1134–1145. https://doi.org/10.1080/10942912.2019.1626879 DOI: https://doi.org/10.1080/10942912.2019.1626879

Venugopal, P., & Venugopal, T. (1992). In vitro susceptibility of dermatophytes to imidazoles. Indian Journal of Dermatology, 37(4), 35–41.

Wu, Z., Ameer, K., Hu, C., Bao, A., Wang, R., Tang, W., Chaudhary, N., & Jiang, G. (2022). Particle size of yam flour and its effects on physicochemical properties and bioactive compounds. Food Science and Technology (Brazil), 42, 1–9. https://doi.org/10.1590/fst.43921 DOI: https://doi.org/10.1590/fst.43921

Downloads

Published

2024-05-15

How to Cite

Julien Armel, A. A., William, D. A., Damase Serge, A. O., Zra, T., Tatiana Léa, O. N., Pauline, M. E., Oriane, M. N., Suzanne Rose, K. F., & Evariste, F. F. (2024). Influence of particle size fraction and bioactive compound contents on the biological activities of Solanum torvum L. leaf powder extracts. Journal of Experimental Biology and Agricultural Sciences, 12(2), 203–217. https://doi.org/10.18006/2024.12(2).203.217

Issue

Section

RESEARCH ARTICLES

Categories