Exploring Mechanism of Actions for Eugenol and Beta-Caryophyllene to Combat Colorectal Cancer Chemotherapy Using Network Pharmacology

Authors

DOI:

https://doi.org/10.18006/2024.12(2).188.202

Keywords:

Beta-caryophyllene, Caspase-3, Colorectal cancer, Eugenol, Multi-targeted approach, Synergism

Abstract

This study explores the potential of essential oils, Eugenol (EUG), and Beta-Caryophyllene (BCP) in enhancing the efficacy of the chemotherapeutic drug 5-fluorouracil (5-FU) in treating metastatic colorectal cancer (CRC). Pharmacokinetic assessment through ADMET analysis indicates that EUG and BCP adhere to the rule of five with good bioavailability, ensuring their drug-likeness properties. The study employs a multitarget strategy to reduce drug dosage and enhance effectiveness, testing the compounds on the HCT116 human colorectal cancer cell line. MTT assay revealed in-vitro cytotoxic effects of EUG, BCP, and 5-FU, with a noteworthy reduction in IC50 values observed when combining the compounds, indicating synergistic effects (CI < 1) as depicted in the Fa-CI plot. Network pharmacology-based analysis of the compound-disease-target (C-D-T) network identifies 58, 24, and 49 target proteins for EUG, BCP, and 5-FU, respectively, in metastatic CRC. Venn diagram intersection reveals 11 common target proteins, and the merged C-D-T network highlights 84 target proteins, with 16 selected based on edge count, including HSP90AA1, IGF-1R, ESR1, and CASP3. Molecular docking studies indicate that EUG, BCP, and 5-FU effectively inhibit the core target protein HSP90AA1 within the C-D-T network, suggesting their potential as modulators for CRC metastasis. These findings propose a promising approach for developing drugs targeting specific proteins to mitigate metastasis in colorectal cancer.

References

Abdullah, M.L., Al-Shabanah, O., Hassan, Z.K., & Hafez, M.M. (2021). Eugenol-Induced Autophagy and Apoptosis in Breast Cancer Cells via PI3K/AKT/FOXO3a Pathway Inhibition. International Journal of Molecular Sciences, 22(17), 9243. DOI: https://doi.org/10.3390/ijms22179243

Abdullah, M.L., Hafez, M.M., Al-Hoshani, A., & Al-Shabanah, O. (2018) Anti-metastatic and antiproliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC Complementary and Alternative Medicine, 18(1), 1-11. DOI: https://doi.org/10.1186/s12906-018-2392-5

Absalan, A., Mesbah-Namin, S.A., Tiraihi, T., & Taheri, T. (2017). Cinnamaldehyde and eugenol change the expression folds of AKT1 and DKC1 genes and decrease the telomere length of human adipose-derived stem cells (hASCs): An experimental and in silico study. Iranian Journal of Basic Medical Sciences, 20(3), 316–26.

Ahmed, E.A., Abu Zahra, H., Ammar, R.B., Mohamed, M.E., & Ibrahim, H.I.M. (2022). Beta-Caryophyllene Enhances the Anti-Tumor Activity of Cisplatin in Lung Cancer Cell Lines through Regulating Cell Cycle and Apoptosis Signaling. Molecules, 27(23), 8354. DOI: https://doi.org/10.3390/molecules27238354

Alonso Gómez, C., Satta, V., Díez Gutiérrez, P., Fernández Ruiz, J., & Sagredo Ezquioga, O. (2022). Preclinical investigation of β-caryophyllene as a therapeutic agent in an experimental murine model of Dravet syndrome. Neuropharmacology, 205, 108914. DOI: https://doi.org/10.1016/j.neuropharm.2021.108914

Amiel, E., Ofir, R., Dudai, N., Soloway, E., Rabinsky, T., & Rachmilevitch, S. (2012). β-Caryophyllene, a compound isolated from the biblical balm of gilead (Commiphora gileadensis), is a selective apoptosis inducer for tumor cell lines. Evidence-Based Complementary and Alternative Medicine, 2012. https://doi.org/10.1155/2012/872394 DOI: https://doi.org/10.1155/2012/872394

Amin, M.L. (2013). P-glycoprotein Inhibition for Optimal Drug Delivery. Drug Target Insights, 7, DTI-S12519. DOI: https://doi.org/10.4137/DTI.S12519

Anwar, S., Malik, J.A., Ahmed, S., Kameshwar, V.A., Alanazi, J., Alamri, A., & Ahemad, N. (2022). Can Natural Products Targeting EMT Serve as the Future Anticancer Therapeutics? Molecules, 27(22), 7668. DOI: https://doi.org/10.3390/molecules27227668

Arnold, M., Sierra, M.S., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2017). Global patterns and trends in colorectal cancer incidence and mortality. Gut, 66 (4), 683–91. DOI: https://doi.org/10.1136/gutjnl-2015-310912

Assenov, Y., Ramírez, F., Schelhorn, S.E., Lengauer, T., & Albrecht, M. (2008). Computing topological parameters of biological networks. Bioinformatics, 24(2), 282–4. https://doi.org/10.1093/bioinformatics/btm554 DOI: https://doi.org/10.1093/bioinformatics/btm554

Benarba, B., & Pandiella, A. (2018). Colorectal cancer and medicinal plants: Principle findings from recent studies. Biomedicine & Pharmacotherapy, 107, 408–423. DOI: https://doi.org/10.1016/j.biopha.2018.08.006

Bhardwaj, P., & Dilbaghi, N. (2022). Pharmaceutical Nanoarchitectonics: Molecular Pharmaceutics and Smart Delivery of β-Caryophyllene Constellated 5-FU Nanoinvasomes for Skin Cancer Therapy. BioNanoScience, 12(4), 1329–40. DOI: https://doi.org/10.1007/s12668-022-01036-3

Casale, J., & Patel, P. (2022). Fluorouracil. StatPearls, Treasure Island (FL). http://www.ncbi.nlm.nih.gov/books/NBK549808/

Chou, T.C., & Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation, 22, 27–55. https://doi.org/10.1016/0065-2571(84)90007-4 DOI: https://doi.org/10.1016/0065-2571(84)90007-4

Codony-Servat, J., Cuatrecasas, M., Asensio, E., Montironi, C., Martinez-Cardus, A., Marin-Aguilera, M., & Maurel, J. (2017). Nuclear IGF-1R predicts chemotherapy and targeted therapy resistance in metastatic colorectal cancer. British Journal of Cancer, 117, 1777–1786. https://doi.org/10.1038/bjc.2017.279 DOI: https://doi.org/10.1038/bjc.2017.279

Dahham, S.S., Tabana, Y.M., Iqbal, M.A., Ahamed, M. B., Ezzat, M. O., Majid, A. S., & Majid, A. M. (2015). The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules, 20, 11808–11829. https://doi.org/10.3390/ molecules200711808 DOI: https://doi.org/10.3390/molecules200711808

das Chagas Pereira de Andrade, F., & Mendes, A.N. (2020). Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways. Scientific Reports, 10(1), 1–14. DOI: https://doi.org/10.1038/s41598-020-73203-z

Deepak, V., Kasonga, A., Kruger, M.C., & Coetzee, M. (2015). Inhibitory effects of eugenol on RANKL-induced osteoclast formation via attenuation of NF- κ B and MAPK pathways. Connective Tissue Research, 56, 195–203. https://doi.org/10.3109/03008207.2014.989320 DOI: https://doi.org/10.3109/03008207.2014.989320

Di, L. (2017). Reaction phenotyping to assess victim drug-drug interaction risks. Expert Opinion on Drug Discovery, 12, 1105–1115. https://doi.org/10.1080/17460441.2017.1367280 DOI: https://doi.org/10.1080/17460441.2017.1367280

Ditonno, I., Losurdo, G.,Rendina, M., Pricci, M., Girardi, B., Ierardi, E., & Di Leo, A. (2021). Estrogen Receptors in Colorectal Cancer: Facts, Novelties and Perspectives. Current Oncology, 28, 4256–4263. https://doi.org/10.3390/curroncol28060361 DOI: https://doi.org/10.3390/curroncol28060361

Fan, Q., Guo, L., Guan, J.,Chen, J., Fan, Y., Chen, Z., & Li, H. (2020). Network Pharmacology-Based Study on the Mechanism of Gegen Qinlian Decoction against Colorectal Cancer. Evidence Based Complementary Alternative Medicine, 2020, 1–14. https://doi.org/10.1155/2020/8897879 DOI: https://doi.org/10.1155/2020/8897879

Fathy, M., Fawzy, M.A., Hintzsche, H., Nikaido, T., Dandekar, T., & Othman, E. M. (2019). Eugenol Exerts Apoptotic Effect and Modulates the Sensitivity of HeLa Cells to Cisplatin and Radiation. Molecules, 24, 3979. https://doi.org/10.3390/ molecules24213979 DOI: https://doi.org/10.3390/molecules24213979

Fernández-Ruiz, J., Sagredo, O., Pazos, M.R., Garcia, C., Pertwee, R., Mechoulam, R., & Martinez-Orgado, J. (2013). Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? British Journal of Clinical Pharmacology, 75, 323–333. https://doi.org/10.1111/j.1365-2125.2012.04341.x DOI: https://doi.org/10.1111/j.1365-2125.2012.04341.x

Garrido, A., Lepailleur, A., Mignani, S.M., Dallemagne, P., & Rochais, C. (2020). hERG toxicity assessment: Useful guidelines for drug design. European Journal of Medicinal Chemistry, 195, 112290. https://doi.org/10.1016/j.ejmech.2020.112290 DOI: https://doi.org/10.1016/j.ejmech.2020.112290

Gibbs, J.P., Hyland, R., & Youdim, K. (2006). Minimizing Polymorphic Metabolism in Drug Discovery: Evaluation of the Utility of in Vitro Methods for Predicting Pharmacokinetic Consequences Associated with CYP2D6 Metabolism. Drug Metabolism and Disposition, 34, 1516–1522. https://doi.org/10.1124/dmd.105.008714 DOI: https://doi.org/10.1124/dmd.105.008714

Gonzalez, E., Jain, S., Shah, P., Torimoto-Katori, N., Zakharov, A., Nguyen, D. T., & Xu, X. (2021). Development of Robust Quantitative Structure-Activity Relationship Models for CYP2C9, CYP2D6, and CYP3A4 Catalysis and Inhibition. Drug Metabolism and Disposition, 49, 822–832. https://doi.org/10.1124/ dmd.120.000320 DOI: https://doi.org/10.1124/dmd.120.000320

Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. Journal of Medicinal Chemistry, 47, 1750–1759. https://doi.org/10.1021/jm030644s DOI: https://doi.org/10.1021/jm030644s

Hemaiswarya, S., & Doble, M. (2013). Combination of phenylpropanoids with 5-fluorouracil as anticancer agents against human cervical cancer (HeLa) cell line. Phytomedicine, 20, 151–158. https://doi.org/10.1016/j.phymed.2012.10.009 DOI: https://doi.org/10.1016/j.phymed.2012.10.009

Huang, S., Zhang, Z., Li, W., Kong, F., Yi, P., Huang, J., & Zhuang, S. (2020). Network Pharmacology-Based Prediction and Verification of the Active Ingredients and Potential Targets of Zuojinwan for Treating Colorectal Cancer. Drug Design, Development and Therapy, 14, 2725–2740. https://doi.org/10.2147/DDDT.S250991 DOI: https://doi.org/10.2147/DDDT.S250991

Jubeen, F., Ijaz, S., Jabeen, I., Aftab, U., Mehdi, W., Altaf, A., & Iqbal, M. (2022). Anticancer potential of novel 5-Fluorouracil co-crystals against MCF7 breast and SW480 colon cancer cell lines along with docking studies. Arabian Journal of Chemistry, 15, 104299. https://doi.org/10.1016/j.arabjc.2022.104299 DOI: https://doi.org/10.1016/j.arabjc.2022.104299

Kadoyama, K., Miki, I., Tamura, T., Brown, J. B., Sakaeda, T., & Okuno, Y. (2011). Adverse Event Profiles of 5-Fluorouracil and Capecitabine: Data Mining of the Public Version of the FDA Adverse Event Reporting System, AERS, and Reproducibility of Clinical Observations. International Journal of Medicinal Sciences, 9, 33–39. https://doi.org/10.7150/ijms.9.33 DOI: https://doi.org/10.7150/ijms.9.33

Kamal, M.M., Akter, S., Lin, C.N., & Nazzal, S. (2020). Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Archives of Pharmacal Research, 43, 371–384. https://doi.org/10.1007/s12272-020-01225-2 DOI: https://doi.org/10.1007/s12272-020-01225-2

Li Z, Veeraraghavan, V. P., Mohan, S. K., Bolla, S. R., Lakshmanan, H., Kumaran, S., & Chinnathambi, A. (2020) Apoptotic induction and anti-metastatic activity of eugenol encapsulated chitosan nanopolymer on rat glioma C6 cells via alleviating the MMP signaling pathway. Journal of Photochemistry and Photobiology B: Biology, 203, 111773. https://doi.org/10.1016/j.jphotobiol.2019.111773 DOI: https://doi.org/10.1016/j.jphotobiol.2019.111773

Lipinski, C.A., Lombardo, F., Dominy, B.W., & Feeney, P.J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4-17. https://doi.org/10.1016/S0169-409X(96)00423-1 DOI: https://doi.org/10.1016/j.addr.2012.09.019

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. https://doi.org/10.1016/0022-1759(83)90303-4 DOI: https://doi.org/10.1016/0022-1759(83)90303-4

Naren, G., Guo, J., Bai, Q., Fan, N., & Nashun, B. (2022). Reproductive and developmental toxicities of 5-fluorouracil in model organisms and humans. Expert Reviews in Molecular Medicine, 24, e9. https://doi.org/10.1017/erm.2022.3 DOI: https://doi.org/10.1017/erm.2022.3

Ng, P.L., Rajab, N.F., Then, S.M., Mohd Yusof, Y. A., Wan Ngah, W. Z., Pin, K. Y., & Looi, M. L. (2014). Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells. Journal of Zhejiang University-Science B, 15, 692–700. https://doi.org/10.1631/jzus.B1300303 DOI: https://doi.org/10.1631/jzus.B1300303

Noor, F., Tahir ul Qamar, M., Ashfaq, U.A., Albutti, A., Alwashmi, A. S., & Aliasir, M. A. (2022). Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals, 15, 572. https://doi.org/10.3390/ph15050572 DOI: https://doi.org/10.3390/ph15050572

Park, K.R., Nam, D., Yun, H.M., Lee, S. G., Jang, H. J., et al. (2011). β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Letters, 312, 178–188. https://doi.org/10.1016/j.canlet.2011.08.001 DOI: https://doi.org/10.1016/j.canlet.2011.08.001

Prival, M.J., & Zeiger, E. (1998). Chemicals mutagenic in Salmonella typhimurium strain TA1535 but not in TA100. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 412, 251–260. https://doi.org/10.1016/S1383-5718(97)00196-4 DOI: https://doi.org/10.1016/S1383-5718(97)00196-4

Sheridan, R.P., & Shpungin, J. (2004). Calculating Similarities between Biological Activities in the MDL Drug Data Report Database. Journal of Chemical Information and Computer Sciences, 44, 727–740. https://doi.org/10.1021/ci034245h DOI: https://doi.org/10.1021/ci034245h

Surducan, D.A., Racea, R.C., Cabuta, M., Olariu, I., Macasoi, I., Rusu, L. C., & Pricop, M. O. (2023). Eugenol Induces Apoptosis in Tongue Squamous Carcinoma Cells by Mediating the

Expression of Bcl-2 Family. Life, 13, 22. https://doi.org/10.3390/life13010022 DOI: https://doi.org/10.3390/life13010022

Toiyama, Y., Hur, K., Tanaka, K., Inoue, Y., Kusunoki, M., Boland, C. R., & Goel, A. (2014). Serum miR-200c Is a Novel Prognostic and Metastasis-Predictive Biomarker in Patients With Colorectal Cancer. Annals of Surgery, 259, 735–743. https://doi.org/10.1097/SLA.0b013e3182a6909d DOI: https://doi.org/10.1097/SLA.0b013e3182a6909d

Ulanowska, M., & Olas, B., (2021). Biological Properties and Prospects for the Application of Eugenol—A Review. International Journal of Molecular Sciences, 22, 3671. https://doi.org/10.3390/ijms22073671 DOI: https://doi.org/10.3390/ijms22073671

Veber, D.F., Johnson., SR., Cheng, H-Y.,Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45, 2615–2623 DOI: https://doi.org/10.1021/jm020017n

Williams, C., DiLeo, A., Niv, Y., & Gustafsson, J.Å. (2016). Estrogen receptor beta as target for colorectal cancer prevention. Cancer Letters, 372, 48–56. https://doi.org/10.1016/ j.canlet.2015.12.009 DOI: https://doi.org/10.1016/j.canlet.2015.12.009

Zhang, A., Qi, X., Du, F., Zhang, G., Li, D., & Li, J. (2021). PNSA, a Novel C-Terminal Inhibitor of HSP90, Reverses Epithelial–Mesenchymal Transition and Suppresses Metastasis of Breast Cancer Cells In Vitro. Marine Drugs, 19, 117. https://doi.org/10.3390/md19020117 DOI: https://doi.org/10.3390/md19020117

Zhu, H., Hao, J., Niu, Y., Liu, D., Chen, D., & Wu, X. (2018). Molecular targets of Chinese herbs: a clinical study of metastatic colorectal cancer based on network pharmacology. Scientific Reports, 8, 7238. https://doi.org/10.1038/s41598-018-25500-x DOI: https://doi.org/10.1038/s41598-018-25500-x

Zou, W.W., & Xu, S.P. (2018). Galangin inhibits the cell progression and induces cell apoptosis through activating PTEN and Caspase-3 pathways in retinoblastoma. Biomedicine & Pharmacotherapy, 97, 851–863. https://doi.org/10.1016/ j.biopha.2017.09.144 DOI: https://doi.org/10.1016/j.biopha.2017.09.144

Zuehlke, A.D., Beebe, K., Neckers, L., & Prince, T. (2015). Regulation and function of the human HSP90AA1 gene. Gene, 570, 8–16. https://doi.org/10.1016/j.gene.2015.06.018 DOI: https://doi.org/10.1016/j.gene.2015.06.018

Downloads

Published

2024-05-15

How to Cite

Trivedi, K., Rathaur, P., Parmar, N., Pancholi, S., Gelat, B., Chettiar, S., Patel, A., & Jhala, D. (2024). Exploring Mechanism of Actions for Eugenol and Beta-Caryophyllene to Combat Colorectal Cancer Chemotherapy Using Network Pharmacology. Journal of Experimental Biology and Agricultural Sciences, 12(2), 188–202. https://doi.org/10.18006/2024.12(2).188.202

Issue

Section

RESEARCH ARTICLES

Categories