Exploring the Impact of Micro-plastics on Soil Health and Ecosystem Dynamics: A Comprehensive Review

Authors

  • Pratikshya Paudel Department of Genetics and Plant Breeding, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
  • Rajneesh Kumar Department of Genetics and Plant Breeding, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India https://orcid.org/0009-0000-1799-2163
  • Manoj Kumar Pandey Department of Genetics and Plant Breeding, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India https://orcid.org/0009-0000-1799-2163
  • Prateek Paudel Forest Research Institute (Dimmed to be University), POIPE, Dehradun- 248195, India
  • Mamata Subedi Department of Genetics and Plant Breeding, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India

DOI:

https://doi.org/10.18006/2024.12(2).163.174

Keywords:

Microplastic, Bulk Density, Soil Biota, Intricate, Holistic, Multifaceted

Abstract

Microplastics, defined as particles measuring less than 5 mm, have emerged as widespread environmental pollutants, prompting concerns regarding their impact on soil ecosystems. This review investigates microplastics' presence, movement, and effects on soil health and ecosystem dynamics while highlighting their diverse sources, including industrial production and the breakdown of larger plastic materials. Despite their ubiquity, a significant gap exists in our understanding of the consequences of microplastics in terrestrial ecosystems, particularly within soils. The findings of this review article revealed that microplastics exert notable influences on soil properties, altering bulk density, aggregation, and water-holding capacity, which may have significant implications for soil biota and plant vitality. Furthermore, microplastics also carry toxic substances, complicating their environmental impact. The effects on soil microorganisms and soil-dwelling fauna, such as earthworms, underscore the intricate relationships within soil ecosystems. Additionally, microplastics can interact with other soil pollutants, potentially amplifying their adverse effects. The long-term impacts of microplastics on soil health remain uncertain, underscoring the imperative for sustained research endeavours. Challenges persist, including the absence of standardized methodologies for microplastic extraction and identification in soils, which hampers our ability to understand their presence and effects comprehensively. Furthermore, the lack of regulatory frameworks complicates managing and mitigating microplastic pollution. Future research should adopt a holistic approach, considering diverse microplastic types and applications. Both field and laboratory experiments are essential for accurately capturing the varied influences of microplastics. Efforts should concentrate on understanding the occurrence of microplastics, developing reliable detection methods, and exploring their interactions with other pollutants, especially in terrestrial ecosystems. In conclusion, mitigating microplastic pollution requires multifaceted strategies informed by ongoing research efforts and public awareness campaigns. We can effectively address the challenges posed by microplastic contamination in soil ecosystems through concerted action and comprehensive understanding.

Author Biography

Rajneesh Kumar, Department of Genetics and Plant Breeding, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India

Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST–K), Wadura- 193201, J & K, India

References

Ali, S.S., Elsamahy, T., Koutra, E., Kornaros, M., El-Sheekh, M., et al. (2021). Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Science of the Total Environment, 771, 144719. DOI: https://doi.org/10.1016/j.scitotenv.2020.144719

Alimi, O.S., Farner Budarz, J., Hernandez, L.M., & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52(4),1704-1724. DOI: https://doi.org/10.1021/acs.est.7b05559

Andrady, A.L. (2011). Microplastics in the marine environment. Marine pollution bulletin, 62(8),1596-1605. DOI: https://doi.org/10.1016/j.marpolbul.2011.05.030

Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environment International, 102, 165-176. DOI: https://doi.org/10.1016/j.envint.2017.02.013

Barnes, D.K., Galgani, F., Thompson, R.C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical transactions of theroyal society B: biological sciences, 364(1526), 1985-1998. DOI: https://doi.org/10.1098/rstb.2008.0205

Boots, B., Russell, C.W., & Green, D.S. (2019). Effects of microplastics in soil ecosystems: above and below ground. Environmental Science & Technology, 53(19), 11496-11506. DOI: https://doi.org/10.1021/acs.est.9b03304

Browne, M.A. (2015). Sources and pathways of microplastics to habitats. In M. Bergmann, L. Gutow, M. Klages, (Eds.) Marine Anthropogenic Litter (pp. 229-244). Springer, Cham. https://doi.org/10.1007/978-3-319-16510-3_9. DOI: https://doi.org/10.1007/978-3-319-16510-3_9

Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines woldwide: sources and sinks. Environmental Science & Technology, 45(21), 9175-9179. DOI: https://doi.org/10.1021/es201811s

Cao, D., Wang, X., Luo, X., Liu, G., & Zheng, H. (2017). Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. IOP conference series: Earth and Environmental Science, 61 (1), 012148. DOI: https://doi.org/10.1088/1755-1315/61/1/012148

Caruso, G. (2015). Plastic degrading microorganisms as a tool for bioremediation of plastic contamination in aquatic environments. Pollution Effects & Control, 3, e112. DOI: https://doi.org/10.4172/2375-4397.1000e112

Castañeda, R.A., Avlijas, S., Simard, M.A., & Ricciardi, A. (2014). Microplastic pollution in St. Lawrence River sediments. Canadian Journal of Fisheries and Aquatic Sciences, 71(12), 1767-1771. DOI: https://doi.org/10.1139/cjfas-2014-0281

Cole, M., Lindeque, P., Halsband, C., & Galloway, T.S. (2011). Microplastics as contaminants in the marine environment: a review. Marine pollution bulletin, 62(12), 2588-2597. DOI: https://doi.org/10.1016/j.marpolbul.2011.09.025

De Souza Machado, A.A., Kloas, W., Zarfl, C., Hempel, S., & Rillig, M.C. (2018a). Microplastics as an emerging threat to terrestrial ecosystems. Global change biology, 24(4), 1405-1416. DOI: https://doi.org/10.1111/gcb.14020

De Souza Machado, A.A., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J.B., et al. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53(10),6044-6052. DOI: https://doi.org/10.1021/acs.est.9b01339

De Souza Machado, A.A., Lau, C.W., Till, J., Kloas, W., Lehmann, A., Becker, R., & Rillig, M.C. (2018b). Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52(17), 9656-9665. DOI: https://doi.org/10.1021/acs.est.8b02212

Dissanayake, P.D., Kim, S., Sarkar, B., Oleszczuk, P., Sang, M.K., et al. (2022). Effects of microplastics on the terrestrial environment: a critical review. Environmental Research, 209, 112734. DOI: https://doi.org/10.1016/j.envres.2022.112734

Dong, Y., Gao, M., Qiu, W., & Song, Z. (2021). Effect of Microplastics and Arsenic on Nutrients and Microorganisms in Rice Rhizosphere Soil. Ecotoxicology and Environmental Safety, 211,111899. DOI: https://doi.org/10.1016/j.ecoenv.2021.111899

Edo, C., González-Pleiter, M., Leganés, F., Fernández-Piñas, F., & Rosal, R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environmental Pollution, 259,113837. DOI: https://doi.org/10.1016/j.envpol.2019.113837

Eerkes-Medrano, D., Thompson, R.C., & Aldridge, D.C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritization of research needs. Water research, 75, 63-82. DOI: https://doi.org/10.1016/j.watres.2015.02.012

Fuller, S., & Gautam, A. (2016). A procedure for measuring microplastics using pressurized fluid extraction. Environmental science & technology, 50(11), 5774-5780. DOI: https://doi.org/10.1021/acs.est.6b00816

Gong, J., & Xie, P. (2020). Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics. Chemosphere, 254, 126790. DOI: https://doi.org/10.1016/j.chemosphere.2020.126790

Gourmelon, G. (2015). Global plastic production rises, recycling lags. Vital Signs, 22, 91-95.

Grbić, J., Helm, P., Athey, S., & Rochman, C.M. (2020). Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Research, 174, 115623. DOI: https://doi.org/10.1016/j.watres.2020.115623

Guo, J.J., Huang, X.P., Xiang, L., Wang, Y.Z., Li, YW, et al. (2020). Source, migration and toxicology of microplastics in soil. Environment international, 137,105263. DOI: https://doi.org/10.1016/j.envint.2019.105263

Han, Y.N., Wei, M., Han, F., Fang, C., Wang, D., et al. (2020). Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp. Microorganisms, 8(12), 1979. DOI: https://doi.org/10.3390/microorganisms8121979

Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., & Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology, 46(6), 3060-3075. DOI: https://doi.org/10.1021/es2031505

Hüffer, T., Metzelder, F., Sigmund, G., Slawek, S., Schmidt, T.C., & Hofmann, T. (2019). Polyethylene microplastics influence the transport of organic contaminants in soil. Science of the Total Environment, 657, 242-247. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.047

Igalavithana, A.D., Mahagamage, M.G.Y., Gajanayake, P., Abeynayaka, A., Gamaralalage, P.J.D., et al. (2022). Microplastics and potentially toxic elements: potential human exposure pathways through agricultural lands and policy-based countermeasures. Microplastics, 1(1),102-120. DOI: https://doi.org/10.3390/microplastics1010007

Jiang, C., Yin, L., Li, Z., Wen, X., Luo, X., et al. (2019). Microplastic pollution in the rivers of the Tibet Plateau. Environmental Pollution, 249,91-98. DOI: https://doi.org/10.1016/j.envpol.2019.03.022

Judy, J.D., Williams, M., Gregg, A., Oliver, D., Kumar, A., Kookana, R. & Kirby, J.K. (2019). Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environmental Pollution, 252, 522-531. DOI: https://doi.org/10.1016/j.envpol.2019.05.027

Kalia, V.C., Patel, S.K.S., Shanmugam, R., & Lee, J.K. (2021). Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. Bioresource Technology, 326, 124737. DOI: https://doi.org/10.1016/j.biortech.2021.124737

Kim, Y.N., Yoon, J.H., & Kim, K.H.J. (2021). Microplastic contamination in soil environment–a review. Soil Science Annual, 71(4),300-308. DOI: https://doi.org/10.37501/soilsa/131646

Kublik, S., Gschwendtner, S., Magritsch, T., Radl, V., Rillig, M.C., & Schloter, M. (2022). Microplastics in soil induce a new microbial habitat, with consequences for bulk soil microbiomes. Frontiers in Environmental Science, 10, 989267. DOI: https://doi.org/10.3389/fenvs.2022.989267

Kwak, J.I., & An, Y.J. (2021). Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. Journal of Hazardous Materials, 402,124034. DOI: https://doi.org/10.1016/j.jhazmat.2020.124034

Law, K.L., & Thompson, R.C. (2014). Microplastics in the seas. Science, 345(6193),144-145. DOI: https://doi.org/10.1126/science.1254065

Lehmann, A., Fitschen, K., & Rillig, M.C. (2019). Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil Systems, 3(1), 21. DOI: https://doi.org/10.3390/soilsystems3010021

Li, C., Chen, J., Wang, J., Han, P., Luan, Y., Ma, X., & Lu, A. (2016). Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: concentrations, sources, and risk assessment. Science of the Total Environment, 568, 1037-1043. DOI: https://doi.org/10.1016/j.scitotenv.2016.06.077

Liu, K., Wang, X., Wei, N., Song, Z., & Li, D. (2019). Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health. Environment international, 132,105127. DOI: https://doi.org/10.1016/j.envint.2019.105127

Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., et al. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental pollution, 242, 855-862. DOI: https://doi.org/10.1016/j.envpol.2018.07.051

Liu, W., Zhang, J., Liu, H., Guo, X., Zhang, X., et al. (2021). A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environment international, 146, 106277. DOI: https://doi.org/10.1016/j.envint.2020.106277

Lusher, A.L., Bråte, I.L.N., Munno, K., Hurley, R.R., & Welden, N.A. (2020). Is it or isn't it: the importance of visual classification in microplastic characterization. Applied spectroscopy, 74(9), 1139-1153. DOI: https://doi.org/10.1177/0003702820930733

Lv, W., Zhou, W., Lu, S., Huang, W., Yuan, Q., et al. (2019). Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China. Science of the Total Environment, 652, 1209-1218. DOI: https://doi.org/10.1016/j.scitotenv.2018.10.321

Lwanga, H. E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., et al. (2016). Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5),2685-2691. DOI: https://doi.org/10.1021/acs.est.5b05478

Mbachu, O., Jenkins, G., Kaparaju, P., & Pratt, C. (2021). The rise of artificial soil carbon inputs: Reviewing microplastic pollution effects in the soil environment. Science of the Total Environment, 780,146569. DOI: https://doi.org/10.1016/j.scitotenv.2021.146569

Miri, S., Saini, R., Davoodi, S.M., Pulicharla, R., Brar, S.K., & Magdouli, S. (2022). Biodegradation of microplastics: Better late than never. Chemosphere, 286, 131670. DOI: https://doi.org/10.1016/j.chemosphere.2021.131670

O'Brien, S., Okoffo, E.D., O'Brien, J.W., Ribeiro, F., Wang, X., et al. (2020). Airborne emissions of microplastic fibres from domestic laundry dryers. Science of the Total Environment, 747, 141175. DOI: https://doi.org/10.1016/j.scitotenv.2020.141175

Palansooriya, K.N., Sang, M.K., Igalavithana, A.D., Zhang, M., Hou, D., Oleszczuk, P., Sung, J. & Ok, Y.S. (2022). Biochar alters chemical and microbial properties of microplastic-contaminated soil. Environmental Research, 209,112807. DOI: https://doi.org/10.1016/j.envres.2022.112807

Peng, G., Zhu, B., Yang, D., Su, L., Shi, H., & Li, D. (2017). Microplastics in sediments of the Changjiang Estuary, China. Environmental Pollution, 225, 283-290. DOI: https://doi.org/10.1016/j.envpol.2016.12.064

Rillig, M.C., Lehmann, A., de Souza Machado, AA, & Yang, G. (2019). Microplastic effects on plants. New Phytologist, 223(3),1066-1070. DOI: https://doi.org/10.1111/nph.15794

Scheurer, M., & Bigalke, M. (2018). Microplastics in Swiss floodplain soils. Environmental science & technology, 52(6), 3591-3598. DOI: https://doi.org/10.1021/acs.est.7b06003

Selonen, S., Dolar, A., Kokalj, A.J., Skalar, T., Dolcet, L.P., Hurley, R. & van Gestel, C.A. (2020). Exploring the impacts of plastics in soil–The effects of polyester textile fibers on soil invertebrates. Science of the Total Environment, 700,134451. DOI: https://doi.org/10.1016/j.scitotenv.2019.134451

Sendra, M., Sparaventi, E., Novoa, B., & Figueras, A. (2021). An overview of the internalization and effects of microplastics and nanoplastics as pollutants of emerging concern in bivalves. Science of the Total Environment, 753, 142024. DOI: https://doi.org/10.1016/j.scitotenv.2020.142024

Shah, A.A., Hasan, F., Akhter, J.I., Hameed, A. & Ahmed, S. (2008). Degradation of polyurethane by novel bacterial consortium isolated from soil. Annals of microbiology, 58, 381-386. DOI: https://doi.org/10.1007/BF03175532

Stawiński, W., & Wal, K. (2021). Microbial degradation of polymers. Recent Advances in Microbial Degradation, 19-46. DOI:10.1007/978-981-16-0518-5_2. DOI: https://doi.org/10.1007/978-981-16-0518-5_2

Sun, J., Dai, X., Wang, Q., Van Loosdrecht, M.C., & Ni, B.J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water research, 152, 21-37. DOI: https://doi.org/10.1016/j.watres.2018.12.050

Sun, J., Peng, Z., Zhu, Z.R., Fu, W., Dai, X. & Ni, BJ (2022). The atmospheric microplastics deposition contributes to microplastic pollution in urban waters. Water Research, 225,119116. DOI: https://doi.org/10.1016/j.watres.2022.119116

Sun, M., Ye, M., Jiao, W., Feng, Y., Yu, P., et al. (2018). Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid. Journal of Hazardous Materials, 345,131-139. DOI: https://doi.org/10.1016/j.jhazmat.2017.11.036

Tanaka, K., & Takada, H. (2016). Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Scientific reports, 6(1), 34351. DOI: https://doi.org/10.1038/srep34351

Thompson, R.C. (2015). Microplastics in the marine environment: sources, consequences and solutions. In: M. Bergmann, L. Gutow, & M. Klages (Eds.), Marine Anthropogenic Litter (pp. 185–200). Springer, Cham. https://doi.org/10.1007/978-3-319-16510-3_7. DOI: https://doi.org/10.1007/978-3-319-16510-3_7

Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W., McGonigle, D. & Russell, A.E. (2004). Lost at sea: where is all the plastic?. Science, 304(5672), 838- 838. DOI: https://doi.org/10.1126/science.1094559

United Nations Environment Programme. Division of Early Warning. (2011). UNEP year book 2011: emerging issues in our global environment. UNEP/Earthprint.

Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J., & Janssen, C.R. (2015). Microplastics in sediments: a review of techniques, occurrence and effects. Marine Environmental Research, 111, 5-17. DOI: https://doi.org/10.1016/j.marenvres.2015.06.007

Veresoglou, S.D., Halley, J.M., & Rillig, M.C. (2015). Extinction risk of soil biota. Nature communications, 6(1), 8862. DOI: https://doi.org/10.1038/ncomms9862

Wan, Y., Chen, X., Liu, Q., Hu, H., Wu, C., & Xue, Q. (2022). Informal landfill contributes to the pollution of microplastics in the surrounding environment. Environmental Pollution, 293, 118586. DOI: https://doi.org/10.1016/j.envpol.2021.118586

Wang, F., Wang, Q., Adams, C.A., Sun, Y., & Zhang, S. (2022). Effects of microplastics on soil properties: current knowledge and future perspectives. Journal of Hazardous Materials, 424, 127531. DOI: https://doi.org/10.1016/j.jhazmat.2021.127531

Wang, S., Chen, H., Zhou, X., Tian, Y., Lin, C., Wang, W., Zhou, K., Zhang, Y., & Lin, H. (2020). Microplastic abundance, distribution and composition in the mid-west Pacific Ocean. Environmental pollution, 264,114125. DOI: https://doi.org/10.1016/j.envpol.2020.114125

Wang, W., Ndungu, A.W., Li, Z., & Wang, J. (2017). Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Science of the Total Environment, 575,1369-1374. DOI: https://doi.org/10.1016/j.scitotenv.2016.09.213

Weithmann, N., Möller, J.N., Löder, M.G., Piehl, S., Laforsch, C., & Freitag, R. (2018). Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances, 4(4), eaap8060. DOI: https://doi.org/10.1126/sciadv.aap8060

Yi, M., Zhou, S., Zhang, L. & Ding, S. (2021). The effects of three different microplastics on enzyme activities and microbial communities in soil. Water Environment Research, 93(1), 24-32. DOI: https://doi.org/10.1002/wer.1327

Yongming, L., Qian, Z., Haibo, Z., Xiangliang, P., Chen, T., Lianzhen, L. & Jie, Y. (2018). Pay Attention to Research on Microplastic Pollution in Soil for Prevention of Ecological and Food Chain Risks. Bulletin of Chinese Academy of Sciences (Chinese Version), 33(10), 1021-1030.

Zhang, G., Zhang, F., & Li, X. (2019). Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Science of The Total Environment, 670, 1- 7. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.149

Zhang, G.S., & Liu, Y.F. (2018). The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment, 642, 12-20. DOI: https://doi.org/10.1016/j.scitotenv.2018.06.004

Zhou, Y., Liu, X., & Wang, J. (2020). Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida. Journal of Hazardous Materials, 392, 122273. DOI: https://doi.org/10.1016/j.jhazmat.2020.122273

Downloads

Published

2024-05-15

How to Cite

Paudel, P., Kumar, R., Pandey, M. K., Paudel, P., & Subedi, M. (2024). Exploring the Impact of Micro-plastics on Soil Health and Ecosystem Dynamics: A Comprehensive Review. Journal of Experimental Biology and Agricultural Sciences, 12(2), 163–174. https://doi.org/10.18006/2024.12(2).163.174

Issue

Section

REVIEW ARTICLES