Biosynthesis of secondary metabolites in aromatic and medicinal plants in response to abiotic stresses: A review

Authors

DOI:

https://doi.org/10.18006/2024.12(3).318.334

Keywords:

Abiotic stress, Climate change, Secondary metabolites, MAPs, Medicine

Abstract

Climate change has massive consequences on non-living factors in the environment, resulting in irregular precipitation, fluctuating atmospheric temperature, and variations in humidity. These changes cause biotic and abiotic stresses; plants must have defense mechanisms to survive. Therefore, plants divert some synthesized energy towards producing numerous plant secondary metabolites (PSMs), viz., flavonoids, alkaloids, and essential oils. These compounds act as protections for the plants, helping them to survive under stressful conditions. Medicinal and aromatic plants (MAPs) are sessile organisms that are not immune to harmful consequences of various abiotic stresses in which the PSMs have an important role in acting against the adverse effects. In this regard, the MAPs have a coherent defense mechanism for abiotic stresses. The secondary metabolites produced by these plants are useful as medicines and aromatic products for humans. However, not all stresses produce high secondary metabolites, as their production is highly specific to certain stresses. This review provides a comprehensive understanding of secondary metabolite production under various stressful conditions, including extreme temperature, drought, water logging, salinity, harmful radiation, elevated levels of ozone and CO2, heavy metals, and agrochemicals on MAPs. Additionally, the production of these compounds can be modified by subjecting plants to various stressors. Many authors have reported on PSMs in MAPs, which need to be well documented and exploited for humankind.

References

Abd EL-Azim, W. M., & Ahmed, S. T. (2009). Effect of salinity and cutting date on growth and chemical constituents of Achillea fragratissima Forssk, under Ras Sudr conditions. Research Journal of Agriculture and Biological Sciences, 5(6), 1121-1129

Ahmad, B., Tian, C., Tang, J. X., Dumbuya, J. S., Li, W., & Lu, J. (2024). Anticancer activities of natural abietic acid. Frontiers in Pharmacology, 15, 1392203. https://doi.org/10.3389/ fphar.2024.1392203 DOI: https://doi.org/10.3389/fphar.2024.1392203

Akanmu, A. O., Yunus, H. H., Balogun, S. T., Sodipo, O. A., Paul, L. M., & Gulani, I. (2021). Antibacterial Activity of Aqueous and Ethanol Fruit Extracts of Cucumis‎ sativus Linn. Against Selected Microorganisms at the University of‎ Maiduguri Teaching Hospital, Maiduguri. Sahel Journal of Veterinary Sciences, 18(2), 17-22. https://doi.org/10.54058/saheljvs.v18i2.222 DOI: https://doi.org/10.54058/saheljvs.v18i2.222

Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720-1731. https://doi.org/10.4161/psb.6.11.17613 DOI: https://doi.org/10.4161/psb.6.11.17613

Balfagón, D., Rambla, J. L., Granell, A., Arbona, V., & Gomez-Cadenas, A. (2022). Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion. Environmental and Experimental Botany, 195, 104793. DOI: https://doi.org/10.1016/j.envexpbot.2022.104793

Bankar, J. S., Bondre, K. N., Wagh, P. P., Bhope, S. S., Pande, J. S., et al. (2024). Herbal Medicines for the Management of Diseases in the Heart, Circulation, and Blood. In A.K. Dhara, & S.C. Mandal (Eds.) Role of Herbal Medicines: Management of Lifestyle Diseases (pp. 129-144). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7703-1_7 DOI: https://doi.org/10.1007/978-981-99-7703-1_7

Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S. F., & Nabavi, S. M. (2017). Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research, 196, 44-68. https://doi.org/10.1016/j.micres.2016.12.003 DOI: https://doi.org/10.1016/j.micres.2016.12.003

Benjamin, J. J., Lucini, L., Jothiramshekar, S., & Parida, A. (2019). Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes. Plant Physiology and Biochemistry, 135, 528-545. https://doi.org/10.1016/j.plaphy.2018.11.006 DOI: https://doi.org/10.1016/j.plaphy.2018.11.006

Bhatwalkar, S. B., Mondal, R., Krishna, S. B. N., Adam, J. K., Govender, P., & Anupam, R. (2021). Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Frontiers in Microbiology, 12, 1869. https://doi.org/10.3389/fmicb.2021.613077 DOI: https://doi.org/10.3389/fmicb.2021.613077

Blanco-Ulate, B., Amrine, K. C., Collins, T. S., Rivero, R. M., Vicente, A. R., et al. (2015). Developmental and metabolic plasticity of white-skinned grape berries in response to Botrytis cinerea during noble rot. Plant Physiology, 169(4), 2422-2443. https://doi.org/10.1104/pp.15.00852 DOI: https://doi.org/10.1104/pp.15.00852

Bourgou, S., Ksouri R., Bellila, A., Skandarani, I., Falleh, H., Marzouk, B. (2008). Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. Journal Algérien des Régions Arides, 331, 48-55. DOI: https://doi.org/10.1016/j.crvi.2007.11.001

Cai, Z., Kastell, A., Speiser, C., & Smetanska, I. (2013). Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability. Applied Biochemistry and Biotechnology, 171, 330-340. https://doi.org/10.1007/s12010-013-0354-4 DOI: https://doi.org/10.1007/s12010-013-0354-4

Cardoso, M.N., Araújo, A.G.D., Oliveira, L.A.R., Cardoso, B.T., Muniz, A.V.C.D.S., et al. (2019). Proline synthesis and physiological response of cassava genotypes under in vitro salinity. Ciência Rural, Santa Maria, 49, (6), e20170175. https://doi.org/10.1590/0103-8478cr20170175 DOI: https://doi.org/10.1590/0103-8478cr20170175

Chan, L. K., Koay, S. S., Boey, P. L. & Bhatt A. (2010). Effects of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Biological Research, 43(1), 127-135. http://dx.doi.org/10.4067/S0716-97602010000100014 DOI: https://doi.org/10.4067/S0716-97602010000100014

Chu, M., Zhang, M. B., Liu, Y. C., Kang, J. R., Chu, Z. Y., et al. (2016). Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Scientific reports, 6, 24748. https://doi.org/10.1038/srep24748 DOI: https://doi.org/10.1038/srep24748

D’Souza, M. R., & Devaraj, V. R. (2010). Biochemical responses of Hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiologiae Plantarum, 32, 341-353. https://doi.org/10.1007/ s11738-009-0412-2 DOI: https://doi.org/10.1007/s11738-009-0412-2

Das, M., Jain, V., & Malhotra, S. K. (2016). Impact of climate change on medicinal and aromatic plants. The Indian Journal of Agricultural Sciences, 86(11), 1375-82. https://doi.org/10.56093/ ijas.v86i11.62865 DOI: https://doi.org/10.56093/ijas.v86i11.62865

de Castro, E. M., Pinto, J. E. B. P., Bertolucci, S. K., Malta, M. R., Cardoso, M. D. G., & de MSilva, F. A. (2007). Coumarin contents in young Mikania glomerata plants (Guaco) under different radiation levels and photoperiod. Acta Farmaceutica Bonaerense, 25(3), 387-392.

De, D., & De, B. (2011). Elicitation of diosgenin production in Trigonella foenum-graecum L. seedlings by heavy metals and signaling molecules. Acta physiologiae plantarum, 33, 1585-1590. https://doi.org/10.1007/s11738-010-0691-7 DOI: https://doi.org/10.1007/s11738-010-0691-7

dos Santos Nascimento, L. B., Leal-Costa, M. V., Menezes, E. A., Lopes, V. R., Muzitano, M. F., Costa, S. S., & Tavares, E. S. (2015). Ultraviolet-B radiation effects on phenolic profile and flavonoid content of Kalanchoepinnata. Journal of Photochemistry and Photobiology B: Biology, 148, 73-81. https://doi.org/10.1007/ s11738-010-0691-7 DOI: https://doi.org/10.1016/j.jphotobiol.2015.03.011

Edreva A. M., Velikova, V., & Tsonev, T. (2000). Phenylamides in plants. Russian Journal Plant Physiology, 54, 287–301. doi: 10.1134/S1021443707030016. DOI: https://doi.org/10.1134/S1021443707030016

Ghorbani, A., Emamverdian, A., Pehlivan, N., Zargar, M., Razavi, S. M., & Chen, M. (2024). Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. Journal of Nanobiotechnology, 22(1), 91. https://doi.org/10.1186/s12951-024-02371-1 DOI: https://doi.org/10.1186/s12951-024-02371-1

Guo, F., Danielski, R., Santhiravel, S., & Shahidi, F. (2024). Unlocking the Nutraceutical Potential of Legumes and Their By-Products: Paving the Way for the Circular Economy in the Agri-Food Industry. Antioxidants, 13(6), 636. https://doi.org/10.3390/ antiox13060636 DOI: https://doi.org/10.3390/antiox13060636

Guo, X.R., Yang, L., Yu, J.H, Tang, Z. H., & Zu Y. G. (2007). Alkaloid variations in Catharanthus roseus seedlings treated by different temperatures in short term and long term. Journal of Forestry Research, 18(4), 313-315. https://doi.org/10.1007/ s11676-007-0063-3 DOI: https://doi.org/10.1007/s11676-007-0063-3

Haghighi, Z., Karimi, N., Modarresi, M., & Mollayi, S. (2012). Enhancement of compatible solute and secondary metabolites production in Plantago ovata Forsk. by salinity stress. Journal of Medicinal Plants Research, 6(18), 3495-3500. https://www.cabidigitallibrary.org/doi/full/10.5555/20123198771 DOI: https://doi.org/10.5897/JMPR12.159

Hameed, A., Hussain, S. A., & Suleria, H. A. R. (2020). "Coffee Bean-Related" agroecological factors affecting the coffee. In Mérillon, JM., Ramawat, K. (eds) Co-evolution of Secondary Metabolites (pp. 641-705). Springer, Cham https://doi.org/10.1007/ 978-3-319-96397-6_21 DOI: https://doi.org/10.1007/978-3-319-96397-6_21

Han, C.Y., Ki, S.H., Kim, Y.W., Noh, K., Lee, D.Y., et al. (2011). Ajoene, a stable garlic by-product, inhibits high fat diet-induced hepatic steatosis and oxidative injury through LKB1-dependent AMPK activation. Antioxidants & Redox Signaling, 14(2), pp.187-202. https://doi.org/10.1089/ars.2010.3190 DOI: https://doi.org/10.1089/ars.2010.3190

Herms, D. A., & Mattson, W. J. (1992). The dilemma of plants: to grow or defend. The quarterly review of biology, 67(3), 283-335. DOI: https://doi.org/10.1086/417659

Hichem, H., & Mounir, D. (2009). Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Industrial crops and Products, 30(1), 144-151. DOI: https://doi.org/10.1016/j.indcrop.2009.03.003

Hikal, D. M. (2018). Antibacterial activity of piperine and black pepper oil. Biosciences Biotechnology Research Asia, 15(4), 877. DOI: https://doi.org/10.13005/bbra/2697

Hosseinzadeh, S., Jafarikukhdan, A., Hosseini, A., & Armand, R. (2015). The application of medicinal plants in traditional and modern medicine: a review of Thymus vulgaris. International Journal of Clinical Medicine, 6(09), 635-642. http://doi.org/10.4236/ijcm.2015.69084 DOI: https://doi.org/10.4236/ijcm.2015.69084

Hussain, S., Hafeez, M. B., Azam, R., Mehmood, K., Aziz, M., et al. (2024). Deciphering the role of phytohormones and osmolytes in plant tolerance against salt stress: Implications, possible cross-talk, and prospects. Journal of Plant Growth Regulation, 43(1), 38-59. https://doi.org/10.1007/s00344-023-11070-4 DOI: https://doi.org/10.1007/s00344-023-11070-4

Ibrahim, M. H., Jaafar, H. Z., & Zain, N. A. M. (2017). Impact of Elevated CO2 on Leaf Gas Exchange, Carbohydrates and Secondary Metabolites Accumulation in Labisia pumila Benth. Annual Research & Review in Biology, 19(6), 1-16. https://doi.org/10.9734/ARRB/2017/36673 DOI: https://doi.org/10.9734/ARRB/2017/36673

Ibrahim, M.A., Mäenpää, M., Hassinen, V., Kontunen-Soppela, S., Malec, L., et al. (2010). Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. Journal of Experimental Botany, 61(6), 1583-1595. https://doi.org/10.1093/jxb/erq034 DOI: https://doi.org/10.1093/jxb/erq034

Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological research, 52, 39. https://doi.org/10.1186/s40659-019-0246-3 DOI: https://doi.org/10.1186/s40659-019-0246-3

Jaafar, H. Z., Ibrahim, M. H., & Fakri, N. F. M. (2012). Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian Kacip Fatimah (Labisia pumila Benth). Molecules, 17(6), 7305-7322. https://doi.org/10.3390/molecules17067305 DOI: https://doi.org/10.3390/molecules17067305

Jaleel, C. A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R., & Panneerselvam, R. (2007). Water deficit stress mitigation by calcium chloride in Catharanthus roseus: Effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids and surfaces B: Biointerfaces, 60(1), 110-116. https://doi.org/10.1016/j.colsurfb.2007.06.006 DOI: https://doi.org/10.1016/j.colsurfb.2007.06.006

Jampílek, J., & Kráľová, K. (2023). Impact of Abiotic Stresses on Production of Secondary Metabolites in Medicinal and Aromatic Plants. In T. Aftab (eds) New Frontiers in Plant-Environment Interactions: Innovative Technologies and Developments (pp. 169-252). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-43729-8_8

Janas, K. M., Cvikrová, M., Pałagiewicz, A., Szafranska K., & Posmyk, M. M. (2002). Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Science, 163(2), 369-373.https://doi.org/10.1016/S0168-9452(02)00136-X DOI: https://doi.org/10.1016/S0168-9452(02)00136-X

Jansen, G., Jürgens, H. U., & Ordon, F. (2009). Effects of temperature on the alkaloid content of seeds of Lupinus angustifolius cultivars. Journal of agronomy and crop science, 195(3), 172-177. https://doi.org/10.1111/j.1439-037X.2008.00356.x DOI: https://doi.org/10.1111/j.1439-037X.2008.00356.x

Kaczor-Kamińska, M., Sura, P., & Wróbel, M. (2020). Multidirectional changes in parameters related to sulfur metabolism in frog tissues exposed to heavy metal-related stress. Biomolecules, 10(4), 574. https://doi.org/10.3390/biom10040574 DOI: https://doi.org/10.3390/biom10040574

Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., & Sharma, A. (2020). The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10(16), 5692. https://doi.org/10.3390/app10165692 DOI: https://doi.org/10.3390/app10165692

Keita, K., Darkoh, C., & Okafor, F. (2022). Secondary plant metabolites as potent drug candidates against antimicrobial-resistant pathogens. SN Applied Sciences, 4(8), 209. https://doi.org/10.1007/s42452-022-05084-y DOI: https://doi.org/10.1007/s42452-022-05084-y

Khan, T. A., Mazid M., & Mohammad, F. (2011). Status of secondary plant products under abiotic stress: an overview. Journal of Stress Physiology & Biochemistry, 7(2), 75-98

Khare, S., Singh, N. B., Singh, A., Hussain, I., Niharika, K. M., et al. (2020). Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. Journal of Plant Biology, 63, 203-216. https://doi.org/10.1007/s12374-020-09245-7 DOI: https://doi.org/10.1007/s12374-020-09245-7

Ko, Y. J., Lee, M. E., Cho, B. H., Kim, M., Hyeon, J. E., Han, J. H., & Han, S. O. (2024). Bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories: engineering, metabolic regulations, challenges, and perspectives. Critical Reviews in Biotechnology, 44(3), 373-387. https://doi.org/10.1080/ 07388551.2023.2168512 DOI: https://doi.org/10.1080/07388551.2023.2168512

Kovacik, J. & Klejdus, B. (2008). Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Reports, 27(3) 605-615. https://doi.org/10.1007/s00299-007-0490-9 DOI: https://doi.org/10.1007/s00299-007-0490-9

Kumar, M., Sarvade, S., Kumar, R., & Kumar, A. (2024). Pre-Sowing Treatments on Seeds of Forest Tree Species to Overcome the Germination Problems. Asian Journal of Environment & Ecology, 23(5), 1-18. https://doi.org/10.9734/ajee/2024/v23i5543 DOI: https://doi.org/10.9734/ajee/2024/v23i5543

Laftouhi, A., Eloutassi, N., Ech-Chihbi, E., Rais, Z., Abdellaoui, A., et al. (2023). The impact of environmental stress on the secondary metabolites and the chemical compositions of the essential oils from some medicinal plants used as food supplements. Sustainability, 15(10), p.7842. DOI: https://doi.org/10.3390/su15107842

Lahlou, M. (2013). The success of natural products in drug discovery, Pharmacology and Pharmacy, 4, 17–31. DOI: https://doi.org/10.4236/pp.2013.43A003

Lajayer. H.A., Savaghebi, G., Hadian, J., Hatami, M., & Pezhmanmehr, M. (2017). Comparison of copper and zinc effects on growth, micro-and macronutrients status and essential oil constituents in pennyroyal (Mentha pulegium L.). Brazilian Journal of Botany, 40 (2) 379-388. https://doi.org/10.1007/s40415-016-0353-0 DOI: https://doi.org/10.1007/s40415-016-0353-0

Li, B., Wang, B., Li, H., Peng, L., Ru, M., Liang, Z., & Zhu, Y. (2016). Establishment of Salvia castanea Diels f. tomentosa Stib. hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag+, methyl jasmonate, and yeast extract elicitation. Protoplasma, 253(1) 87-100. https://doi.org/10.1007/ s00709-015-0790-9 DOI: https://doi.org/10.1007/s00709-015-0790-9

Li, X., Ahammed, G. J., Zhang, L., Yan, P., Zhang, L., & Han, W. Y. (2018). Elevated carbon dioxide-induced perturbations in metabolism of tea plants. In W. Y. Han, X. Li, G. Ahammed (eds) Stress physiology of tea in the face of climate change (pp. 135-155). Springer, Singapore. https://doi.org/10.1007/978-981-13-2140-5_7 DOI: https://doi.org/10.1007/978-981-13-2140-5_7

Liu, F., Jensen, C.R., & Andersen, M.N. (2005). A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced by ABA-based chemical signals, Australian Journal of Agricultural Research, 56(11), 1245-1252. https://doi.org/10.1071/AR05062 DOI: https://doi.org/10.1071/AR05062

Liu, X., Li, Y., & Micallef, S. A. (2023). Natural variation and drought-induced differences in metabolite profiles of red oak-leaf and Romaine lettuce play a role in modulating the interaction with Salmonella enterica. International Journal of Food Microbiology, 385, 109998. DOI: https://doi.org/10.1016/j.ijfoodmicro.2022.109998

Luo, Q., Yu, B., & Liu, Y. (2005). Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. Journal of Plant Physiology, 162(9), 1003-1012. https://doi.org/10.1016/j.jplph.2004.11.008 DOI: https://doi.org/10.1016/j.jplph.2004.11.008

Ma, D.S., Tan, L.T.H., Chan, K.G., Yap, W.H., Pusparajah, P., Chuah, L.H., & Goh, B.H. (2018). Resveratrol—potential antibacterial agent against foodborne pathogens, Frontiers in Pharmacology, 9,102. https://doi.org/10.3389/fphar.2018.00102 DOI: https://doi.org/10.3389/fphar.2018.00102

Ma, Q., Liu, Y., Zhan, R. & Chen, Y. (2016). A new is of lavanone from the trunk of Horsfieldia pandurifolia. Natural Product Research, 30(2)131-137. https://doi.org/10.1080/ 14786419.2015.1043554 DOI: https://doi.org/10.1080/14786419.2015.1043554

Mahajan, M., Kuiry, R., & Pal, P. K. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18, 100255. DOI: https://doi.org/10.1016/j.jarmap.2020.100255

Mak, K.K., Kamal, M., Ayuba, S., Sakirolla, R., Kang, Y. B., Mohandas, K., & Pichika, M. (2019). A comprehensive review on eugenol's antimicrobial properties and industry applications: A transformation from ethnomedicine to industry. Pharmacognosy Reviews, 13 (25) 1-9. DOI: https://doi.org/10.4103/phrev.phrev_46_18

Marchese, A., Barbieri, R., Coppo, E., Orhan, I.E., Daglia, M., et al. (2017). Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Critical Reviews in Microbiology, 43, 668–689. https://doi.org/10.1080/ 1040841X.2017.1295225 DOI: https://doi.org/10.1080/1040841X.2017.1295225

Mareri, L., Parrotta, L., & Cai, G. (2022). Environmental stress and plants. International Journal of Molecular Sciences, 23(10), 5416. DOI: https://doi.org/10.3390/ijms23105416

Marín, L., Miguélez, E. M., Villar, C. J., & Lombó, F. (2015). Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed research international, 2015, 905215. https://doi.org/10.1155/2015/905215. DOI: https://doi.org/10.1155/2015/905215

Marin-Bruzos, M., & Grayston, S. J. (2019). Biological control of nematodes by plant growth promoting rhizobacteria: secondary metabolites involved and potential applications. In H. Singh, C. Keswani, M. Reddy, E. Sansinenea, & C. García-Estrada (Eds.) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications (pp. 253-264). Springer, Singapore. https://doi.org/10.1007/978-981-13-5862-3_13. DOI: https://doi.org/10.1007/978-981-13-5862-3_13

Matros, A., Amme, S., Kettig, B., Buck‐Sorlin, G. H., Sonnewald, U. W. E., & MOCK, H. P. (2006). Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. Samsun NN and to increased resistance against infection with potato virus Y. Plant, Cell & Environment, 29(1), 126-137. https://doi.org/10.1111/j.1365-3040.2005.01406.x DOI: https://doi.org/10.1111/j.1365-3040.2005.01406.x

Medina-Rodelo, D. P., Quintana-Obregón, E. A., Gutiérrez-Dorado, R., Heredia, J. B., Puello-Cruz, A. C., & Angulo-Escalante, M. A. (2024). The effects of solid-state fermentation of the defatted Jatropha platyphylla meal on antinutritional factors, toxic compounds, and nutritional composition. Journal of Food Measurement and Characterization, 18(1), 664-675. https://doi.org/10.1007/s11694-023-02191-1 DOI: https://doi.org/10.1007/s11694-023-02191-1

Meijer, N., Zoet, L., Rijkers, D., Nijssen, R., Willemsen, M., Zomer, P., & van der Fels-Klerx, H. J. (2024). Toxicity, transfer and metabolization of the pyrethroid insecticides cypermethrin and deltamethrin by reared black soldier fly larvae. Journal of Insects as Food and Feed, 1(aop), 1-10. https://doi.org/10.1163/23524588-00001167 DOI: https://doi.org/10.1163/23524588-00001167

Morcia, C., Piazza, I., Ghizzoni, R., Delbono, S., Felici, B., et al. (2022). In Search of Antifungals from the Plant World: The Potential of Saponins and Brassica Species against Verticillium dahliae Kleb. Horticulturae, 8(8), 729. https://doi.org/10.3390/ horticulturae8080729 DOI: https://doi.org/10.3390/horticulturae8080729

Müller, A., Eller, J., Albrecht, F., Prochnow, P., Kuhlmann, K., Bandow, J.E., Slusarenko, A.J. & Leichert, L.I.O. (2016). Allicin induces thiol stress in bacteria through S-allylmercapto modification of protein cysteines. Journal of Biological Chemistry, 291 (22) 11477-11490. https://doi.org/10.1074/jbc.M115.702308 DOI: https://doi.org/10.1074/jbc.M115.702308

Nag, S., Lone, R., Praharaju, M., Khan, P., & Hussain, A. (2024). Fungal Control Through Plant Phenolics: A Biotic Constraint. In R. Lone, S. Khan, A. M. Al-Sadi (Eds.) Plant Phenolics in Biotic Stress Management (pp. 339-365). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3334-1_14 DOI: https://doi.org/10.1007/978-981-99-3334-1_14

Nakamoto, M., Kunimura, K., Suzuki, J.I., & Kodera, Y. (2020). Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides. Experimental and Therapeutic Medicine, 19(2) 1550-1553. https://doi.org/10.3892/etm.2019.8388 DOI: https://doi.org/10.3892/etm.2019.8388

Nelson, D. E., Rammesmayer, G., & Bohnert, H. J. (1998). Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. The Plant Cell, 10(5), 753-764. https://doi.org/10.1105/tpc.10.5.753 DOI: https://doi.org/10.1105/tpc.10.5.753

Nikolić, B. M., Ballian, D., & Mitić, Z. S. (2024). Autochthonous Conifers of Family Pinaceae in Europe: Broad Review of Morpho-Anatomical and Phytochemical Properties of Needles and Genetic Investigations. Forests, 15(6), 989. https://doi.org/10.3390/ f15060989 DOI: https://doi.org/10.3390/f15060989

Nogués, S., Allen, D. J., Morison, J. I., & Baker, N. R. (1998). Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant physiology, 117(1), 173-181. https://doi.org/10.1104/pp.117.1.173 DOI: https://doi.org/10.1104/pp.117.1.173

Oueslati, S., Karray-Bouraoui, N., Attia, H., Rabhi, M., Ksouri, R., & Lachaal, M. (2010). Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiologiae Plantarum, 32, 289-296. https://doi.org/10.1007/s11738-009-0406-0 DOI: https://doi.org/10.1007/s11738-009-0406-0

Pagare, S., Bhatia, M., Tripathi, N., Pagare, S., & Bansal, Y. K. (2015). Secondary metabolites of plants and their role: Overview. Current trends in biotechnology and pharmacy, 9(3), 293-304.

Pandita, D., & Pandita, A. (2021). Secondary metabolites in medicinal and aromatic plants (MAPs): potent molecules in nature's arsenal to fight human diseases. In T. Aftab, K.R. Hakeem (Eds) Medicinal and Aromatic Plants: Healthcare and Industrial Applications (pp. 41-84). Springer, Cham. https://doi.org/10.1007/978-3-030-58975-2_2 DOI: https://doi.org/10.1007/978-3-030-58975-2_2

Park, K.I., Ishikawa, N., Morita, Y., Choi, J.D., Hoshino, A. & Iida, S. (2007). A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation', The Plant Journal, 49(4), 641-654. https://doi.org/10.1111/j.1365-313X.2006.02988.x DOI: https://doi.org/10.1111/j.1365-313X.2006.02988.x

Parveen, S., Maurya, N., Meena, A., & Luqman, S. (2024). Cinchonine: A Versatile Pharmacological Agent Derived from Natural Cinchona Alkaloids. Current Topics in Medicinal Chemistry, 24(4), 343-363. https://doi.org/10.2174/ 0115680266270796231109171808 DOI: https://doi.org/10.2174/0115680266270796231109171808

Prasad, A., Kumar, S., Khaliq, A. & Pandey, A. (2011). Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biology and Fertility of Soils, 47, 853-861. https://doi.org/10.1007/s00374-011-0590-0 DOI: https://doi.org/10.1007/s00374-011-0590-0

Punetha, A., Kumar, D., Suryavanshi, P., Padalıa, R., & Kt, V. (2022). Environmental abiotic stress and secondary metabolites production in medicinal plants: a review. Journal of Agricultural Sciences, 28(3), 351-362. https://doi.org/10.15832/ankutbd.999117 DOI: https://doi.org/10.15832/ankutbd.999117

Qaderi, M. M., Martel, A. B., & Strugnell, C. A. (2023). Environmental factors regulate plant secondary metabolites. Plants, 12(3), 447. DOI: https://doi.org/10.3390/plants12030447

Radušienė, J., Karpavičienė, B. & Stanius, Ž. (2012). Effect of external and internal factors on secondary metabolites accumulation in St. John's worth. Botanica Lithuanica, 18(2), 101-108. https://10.2478/v10279-012-0012-8 DOI: https://doi.org/10.2478/v10279-012-0012-8

Raffo, A., Baiamonte, I., De Nicola, G. R., Melini, V., Moneta, E., et al. (2024). Sensory Attributes Driving Preference for Wild Rocket (Diplotaxis tenuifolia) Leaves Tasted as a Single Ingredient and as a Part of a Recipe. Foods, 13(11), 1699. https://doi.org/10.3390/foods13111699 DOI: https://doi.org/10.3390/foods13111699

Rahman, S., Iqbal, M., & Husen, A. (2023). Medicinal plants and abiotic stress: an overview. In A. Husen, & M. Iqbal, (eds) Medicinal Plants: Their Response to Abiotic Stress (pp. 1-34), Springer, Singapore. DOI: https://doi.org/10.1007/978-981-19-5611-9_1

Rai, R., Meena, R.P., Smita, S.S., Shukla, A., Rai, S.K. & Pandey-Rai, S. (2011a). UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L.–An antimalarial plant. Journal of Photochemistry and Photobiology B: Biology, 105(3), 216-225. DOI: https://doi.org/10.1016/j.jphotobiol.2011.09.004

Rai, R., Pandey, S., & Rai, S.P. (2011b). Arsenic-induced changes in morphological, physiological, and biochemical attributes and artemisinin biosynthesis in Artemisia annua, an antimalarial plant. Ecotoxicology, 20, 1900-1913. https://doi.org/10.1007/s10646-011-0728-8 DOI: https://doi.org/10.1007/s10646-011-0728-8

Ramirez‐Castillo, R., Palma‐Rojas, C., Seguel, P. J., Grusz, A. L., & Araya‐Jaime, C. (2024). Unfurling an improved method for visualizing mitotic chromosomes in ferns. Applications in Plant Sciences, e11588. https://doi.org/10.1002/aps3.11588 DOI: https://doi.org/10.1002/aps3.11588

Rodrigues, A.M., Jorge, T., Osorio, S., Pott, D.M., Lidon, F.C., et al. (2021). Primary metabolite profile changes in Coffea spp. promoted by single and combined exposure to drought and elevated CO2 concentration. Metabolites, 11(7), p.427. DOI: https://doi.org/10.3390/metabo11070427

Rzyska, K., Stuper-Szablewska, K., & Kurasiak-Popowska, D. (2024). Diverse Approaches to Insect Control: Utilizing Brassica carinata (A.) Braun and Camelina sativa (L.) Crantz Oil as Modern Bioinsecticides. Forests, 15(1), 105. https://doi.org/10.3390/f15010105 DOI: https://doi.org/10.3390/f15010105

Sá, R.A., Sá, R.A., Alberton, O., Gazim, Z.C., Laverde Jr, A., et al. (2015). Phytoaccumulation and effect of lead on yield and chemical composition of Mentha crispa essential oil. Desalination and Water Treatment, 53(11), 3007-3017. https://doi.org/10.1080/19443994.2013.874716 DOI: https://doi.org/10.1080/19443994.2013.874716

Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10, 277. https://doi.org/10.3390/antiox10020277 DOI: https://doi.org/10.3390/antiox10020277

Sadhunavar, B. C., Kolume, D. G., & Unger, B. S. (2015). Effect of Shodhana (Purification) on Convulsive Property of Kupeelu (Strychnous Nuxvomica) Toxicity: An Experimental Study. Indian Journal of Ancient Medicine and Yoga, 8(1), 31. DOI: https://doi.org/10.21088/ijamy.0974.6986.8115.4

Said-Al Ahl, H.A.H., & Omer, E.A. (2011). Medicinal and aromatic plants production under salt stress A review. Herba Polonica, 57(1), 72-87.

Samanta, S., Sarkar, T., & Chakraborty, R. (2024). Multifunctional applications of natural colorants: Preservative, functional ingredient, and sports supplements. Biocatalysis and Agricultural Biotechnology, 56, 103026. https://doi.org/10.1016/ j.bcab.2024.103026 DOI: https://doi.org/10.1016/j.bcab.2024.103026

Sampaio, B.L., Edrada-Ebel, R., & Da Costa, F.B. (2016). Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Scientific Reports, 6(1), 29265. https://doi.org/10.1038/srep29265 DOI: https://doi.org/10.1038/srep29265

Sarkar, P., Dhara, K., & Guhathakurta, H. (2024). Azadirachtin in the aquatic environment: Fate and effects on non-target fauna. Physical Sciences Reviews, 9(2), 765-776. https://doi.org/10.3390/f15010105 DOI: https://doi.org/10.1515/psr-2022-0131

Savé i Montserrat, R., Herralde Traveria, F.D., Codina Mahrer, C., Sánchez Molino, F.J., & Biel Loscos, C. (2007). Effects of atmospheric carbon dioxide fertilization on biomass and secondary metabolites of some plant species with pharmacological interes under greenhouse conditions, Afinidad, 64(528), 237-241.

Shakeran, Z., Keyhanfar, M., Asghari, G., & Ghanadian, M. (2015). Improvement of atropine production by different biotic and abiotic elicitors in hairy root cultures of Datura metel. Turkish Journal of Biology, 39(1), 111-118. https://doi.org/10.3906/biy-1405-25 DOI: https://doi.org/10.3906/biy-1405-25

Sharma, M., Ahuja, A., Gupta, R. & Mallubhotla, S. (2015). Enhanced bacoside production in shoot cultures of Bacopa monnieri under the influence of abiotic elicitors. Natural Product Research, 29(8), 745-749. https://doi.org/10.1080/ 14786419.2014.986657 DOI: https://doi.org/10.1080/14786419.2014.986657

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2021). Reactive oxygen species generation, hazards, and defense mechanisms in plants under environmental (abiotic and biotic) stress conditions. Handbook of plant and crop physiology (pp. 617-658). CRC Press, Boca Raton. DOI: https://doi.org/10.1201/9781003093640-37

Sharma, S. S., & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14(1), 43-50. https://doi.org/10.1016/j.tplants.2008.10.007 DOI: https://doi.org/10.1016/j.tplants.2008.10.007

Tahosin, A., Halim, M. A., Khatun, H., Ove, T. A., Islam, M. A., et al. (2024). Production and evaluation of quality characteristics of ready-to-drink Aloe vera juice incorporation with ginger and lemon. Food and Humanity, 3, 100324. https://doi.org/10.1016/ j.foohum.2024.100324 DOI: https://doi.org/10.1016/j.foohum.2024.100324

Taiz, L. & Zeiger, E. (2006). Plant Physiology Sinauer Associates. Inc., Sunderland, MA.

Tak, Y., & Kumar, M. (2020). Phenolics: a key defense secondary metabolite to counter biotic stress. Plant Phenolics in Sustainable Agriculture, 1, 309-329. https://doi.org/10.1007/978-981-15-4890-1_13 DOI: https://doi.org/10.1007/978-981-15-4890-1_13

Takshak, S. & Agrawal, S.Á. (2014). Secondary metabolites and phenyl propanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant. Journal of Photochemistry and Photobiology B: Biology, 140, 332-343. https://doi.org/10.1016/ j.jphotobiol.2014.08.011 DOI: https://doi.org/10.1016/j.jphotobiol.2014.08.011

Thakur, M., Bhattacharya, S., Khosla, P.K. & Puri, S. (2019). Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants, 12, 1-12. https://doi.org/10.1016/j.jarmap.2018.11.004 DOI: https://doi.org/10.1016/j.jarmap.2018.11.004

Tran, H. T. D., Nguyen, H. T. T., Huynh, T. B., Nguyen, H. N., Nguyen, L. T., et al. (2023). Functional characterization of a bark-specific monoterpene synthase potentially involved in wounding-and methyl jasmonate-induced linalool emission in rubber (Hevea brasiliensis). Journal of Plant Physiology, 282, 153942. https://doi.org/10.1016/j.jplph.2023.153942 DOI: https://doi.org/10.1016/j.jplph.2023.153942

Verma, N. & Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 105-113. https://doi.org/10.1016/j.jarmap.2015.09.002 DOI: https://doi.org/10.1016/j.jarmap.2015.09.002

Virjamo, V., Sutinen, S., & Julkunen‐Tiitto, R. (2014). Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings. Global Change Biology, 20(7), 2252-2260. https://doi.org/10.1111/gcb.12464 DOI: https://doi.org/10.1111/gcb.12464

Vishwakarma, H., Patel, S., Chouksey, S., Lodhi, S., Kurmi, R., & Nema, P. (2022). Herbal products for gynecological disorders. Asian Journal of Dental and Health Sciences, 2(2), 1-8. http://dx.doi.org/10.22270/ajdhs.v2i2.15 DOI: https://doi.org/10.22270/ajdhs.v2i2.15

Wahid, A., & Close, T. J. (2007). Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia plantarum, 51, 104-109. https://doi.org/10.1007/ s10535-007-0021-0 DOI: https://doi.org/10.1007/s10535-007-0021-0

Wallock-Richards, D., Doherty, C.J., Doherty, L., Clarke, D.J., Place, M., Govan, J.R. & Campopiano, D.J. (2014). Garlic revisited: antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex, Plos ONE, 9 (12),1-8. https://doi.org/10.1371/journal.pone.0112726 DOI: https://doi.org/10.1371/journal.pone.0112726

Wang, Y., Yang, L., Zhou, X., Wang, Y., Liang, Y., et al. (2023). Molecular mechanism of plant elicitor daphnetin-carboxymethyl chitosan nanoparticles against Ralstonia solanacearum by activating plant system resistance. International Journal of Biological Macromolecules, 241, 124580. https://doi.org/10.1016/ j.ijbiomac.2023.124580 DOI: https://doi.org/10.1016/j.ijbiomac.2023.124580

WHO. (2013). WHO traditional medicine strategy 2014–2023. Alternate Integr Med: 1–78. Retrieved from http://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/.

Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64(1), 3-19. https://doi.org/10.1016/S0031-9422(03)00300-5 DOI: https://doi.org/10.1016/S0031-9422(03)00300-5

Winkel-Shirley, B. (2001). Flavonoid biosynthesis, A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126, 485–93. https://doi.org/10.1104/pp.126.2.485 DOI: https://doi.org/10.1104/pp.126.2.485

Xie, X., Wang, Q., Deng, Z., Gu, S., Liang, G., & Li, X. (2024). Keap1 Negatively Regulates Transcription of Three Counter-Defense Genes and Susceptibility to Plant Toxin Gossypol in Helicoverpa armigera. Insects, 15(5), 328. https://doi.org/10.3390/ insects15050328 DOI: https://doi.org/10.3390/insects15050328

Yadav, B., Singla, A., Gupta, P., & Rashid, S. (2022). Study of toxin' ricinine'present in Ricinus communis by tlc and gc-ms a forensic perspective. Research Journal of Pharmacy and Technology, 15(3), 1018-1022. https://doi.org/10.52711/0974-360X.2022.00170 DOI: https://doi.org/10.52711/0974-360X.2022.00170

Yadav, M.K., Chae, S.W., Im, G.J., Chung, J.W. & Song, J.J. (2015). Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS ONE, 10(3), 1-8. https://doi.org/10.4172/ 2153-2435.1000367 DOI: https://doi.org/10.1371/journal.pone.0119564

Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762. https://doi.org/10.3390/ molecules23040762 DOI: https://doi.org/10.3390/molecules23040762

Yang, P., Jiang, T., Cong, Z., Liu, G., Guo, Y., et al. (2022). Loss and increase of the electron exchange capacity of natural organic matter during its reduction and reoxidation: the role of quinone and nonquinone moieties. Environmental Science & Technology, 56(10), 6744-6753.https://doi.org/10.1021/acs.est.1c08927 DOI: https://doi.org/10.1021/acs.est.1c08927

Yeshi, K., Crayn, D., Ritmejerytė, E., & Wangchuk, P. (2022). Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules, 27(1), 313. https://doi.org/10.3390/ molecules27010313 DOI: https://doi.org/10.3390/molecules27010313

Yoshida, K. (2024). Chemical and biological study of flavonoid-related plant pigment: current findings and beyond. Bioscience, Biotechnology, and Biochemistry, 88 (7), 705-718. https://doi.org/10.1093/bbb/zbae048 DOI: https://doi.org/10.1093/bbb/zbae048

Zaker, A., Sykora, C., Gössnitzer, F., Abrishamchi, P., Asili, J., Mousavi, S.H. & Wawrosch, C. (2015). Effects of some elicitors on tanshinone production in adventitious root cultures of Perovskia abrotanoides Karel. Industrial Crops and Products, 67, 97-102. https://doi.org/10.1016/j.indcrop.2015.01.015 DOI: https://doi.org/10.1016/j.indcrop.2015.01.015

Zamarripa, C. A., Huskinson, S. L., Townsend, E. A., Prisinzano, T. E., Blough, B. E., Rowlett, J. K., & Freeman, K. B. (2024). Contingent administration of typical and biased kappa opioid agonists reduces cocaine and oxycodone choice in a drug vs. food choice procedure in male rhesus monkeys. Psychopharmacology, 241(2), 305-314. https://doi.org/10.1007/s00213-023-06486-5 DOI: https://doi.org/10.1007/s00213-023-06486-5

Zenkner, F. F., Margis-Pinheiro, M., & Cagliari, A. (2019). Nicotine biosynthesis in Nicotiana: a metabolic overview. Tobacco Science, 56(1), 1-9. https://doi.org/10.3381/18-063 DOI: https://doi.org/10.3381/18-063

Zhang, X., Sun, X., Wu, J., Wu, Y., Wang, Y., Hu, X. & Wang, X. (2020). Berberine damages the cell surface of methicillin-resistant Staphylococcus aureus. Frontiers in Microbiology, 11, 621. https://doi.org/10.3389/fmicb.2020.00621 DOI: https://doi.org/10.3389/fmicb.2020.00621

Zhao, Y., Qi, L.W., Wang, W.M., Saxena, P.K., & Liu, C.Z. (2011). Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. Journal of Pineal Research, 50(1), 83-88. https://doi.org/10.1111/j.1600-079X.2010.00817.x DOI: https://doi.org/10.1111/j.1600-079X.2010.00817.x

Zheng, J., Yang, B., Ruusunen, V., Laaksonen, O., Tahvonen, R., Hellsten, J. & Kallio, H. (2012). Compositional differences of phenolic compounds between black currant (Ribes nigrum L.) cultivars and their response to latitude and weather conditions. Journal of Agricultural and Food Chemistry, 60(26), 6581-6593. https://doi.org/10.1021/jf3012739 DOI: https://doi.org/10.1021/jf3012739

Zhou, R., Yu, X., Ottosen, C.O., Rosenqvist, E., Zhao, L., Wang, Y., Yu, W., Zhao, T. & Wu, Z. (2017). Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC plant biology, 17(1), 1-13. https://doi.org/10.1186/s12870-017-0974-x DOI: https://doi.org/10.1186/s12870-017-0974-x

Zu, Y.G., Tang, Z.H., Yu, J.H., Liu, S.G., Wang, W. & Guo, X.R. (2003). Different responses of camptothecin and 10-hydroxycamptothecin to heat shock in Camptotheca acuminata seedlings. Acta Botanica Sinica-Chinese Edition, 45(7), 809-814.

Zuo, GY, Li, Y., Han, J., Wang, G.C., Zhang, Y.L., & Bian, Z.Q. (2012). Antibacterial and synergy of berberines with antibacterial agents against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules, 17(9), 10322-10330. https://doi.org/10.3390/molecules170910322 DOI: https://doi.org/10.3390/molecules170910322

Downloads

Published

2024-07-15

How to Cite

Pradhan, J., Pramanik, K., Jaiswal, A., Kumari, G., Prasad, K., Jena, C., & Srivastava, A. K. (2024). Biosynthesis of secondary metabolites in aromatic and medicinal plants in response to abiotic stresses: A review. Journal of Experimental Biology and Agricultural Sciences, 12(3), 318–334. https://doi.org/10.18006/2024.12(3).318.334

Issue

Section

REVIEW ARTICLES