FIRST REPORT ON TRUFFLE-INHABITING FUNGI AND METAGENOMIC COMMUNITIES OF TUBER AESTIVUM COLLECTED IN RUSSIA

Authors

DOI:

https://doi.org/10.18006/2024.12(1).16.35

Keywords:

Truffle, Tuber aestivum, Microbial community, Symbionts, Fusarium sp., Clonostachys sp., Plectosphaerella sp., Trichothecium sp.

Abstract

Truffles are one of the least studied groups of fungi in terms of their biological and biotechnological aspects. This study aimed to isolate truffle-inhabiting fungi and assess the metagenomic communities of the most common Russian summer truffle, Tuber aestivum. This study is the first to characterize the biodiversity of prokaryotic and eukaryotic organisms living in the truffle T. aestivum using molecular analysis and sequencing. Plant pathogens involved in a symbiotic relationship with truffles were identified by sequencing the hypervariable fragments of the 16S rRNA and 18S rRNA genes. In addition, some strains of fungal symbionts and likely pathogens were isolated and recognized for the first time from the truffles. This study also compared and characterized the general diversity and distribution of microbial taxa of T. aestivum collected in Russia and Europe. The results revealed that the Russian and European truffle study materials demonstrated high similarity. In addition to the truffles, representatives of bacteria, fungi, and protists were found in the fruiting bodies. Many of these prokaryotic and eukaryotic species inhabiting truffles might influence them, help them form mycorrhizae with trees, and regulate biological processes. Thus, truffles are interesting and promising sources for modern biotechnological and agricultural studies.

Author Biographies

Maria M. Morgunova, Irkutsk National Research Technical University, 664074 Irkutsk, Russia

Irkutsk State University, 664003 Irkutsk, Russia

Denis V. Axenov-Gribanov, Irkutsk State University, 664003 Irkutsk, Russia

GreenTechBaikal, LLC, 664007 Irkutsk, Russia

MycoTech, LLC, 664007 Irkutsk, Russia

References

Allen, K., & Bennett, J.W. (2021). Tour of truffles: aromas, aphrodisiacs, adaptogens, and more. Mycobiology, 49 (3).https://doi.org/10.1080/12298093.2021.1936766 DOI: https://doi.org/10.1080/12298093.2021.1936766

Araújo, R.C., Rodrigues, F.A., Nadal, M.C., Ribeiro, M.S., Antônio, C.A., et al. (2021). Acclimatization of Musa spp. seedlings using endophytic Bacillus spp. and Buttiauxellaagrestis strains. Microbiological Research, 248, 126750. https://doi.org/10.1016/j.micres.2021.126750 DOI: https://doi.org/10.1016/j.micres.2021.126750

Barou, V., Rincón, A., Calvet, C., Camprubí, A., & Parladé, J. (2023). Aromatic plants and their associated arbuscular mycorrhizal fungi outcompete Tuber melanosporum in compatibility assays with truffle-oaks. Biology, 12 (4), 628. https://doi.org/10.3390/biology12040628 DOI: https://doi.org/10.3390/biology12040628

Bragato, G., Fornasier, F., Bagi, I., Egli, S., & Marjanović, Ž. (2021). Soil parameters explain short-distance variation in production of Tuber aestivum Vittad. in an oak plantation in the Central-Northern part of the great Hungarianplain (Jászság Region, Hungary). Forest Ecology of Management, 479, 118578. https://doi.org/10.1016/j.foreco.2020.118578 DOI: https://doi.org/10.1016/j.foreco.2020.118578

Dahal, R.H., Chaudhary, D.K., Kim, D.U., Pandey, R.P., & Kim, J. (2021). Chryseobacterium antibioticum sp. nov. with antimicrobial activity against Gram-negative bacteria, isolated from arctic soil. The Journal of Antibiotics, 74 (2), 115–123.https://doi.org/10.1038/s41429-020-00367-1 DOI: https://doi.org/10.1038/s41429-020-00367-1

Das, M., Pal, A., Banerjee, S., Dey, S., & Banerjee, R. (2022). Phylogenomics, microbiome and morphological insights of truffles: the tale of a sensory stimulating ectomycorrhizal filamentous fungus. S. Sahay (Eds) Extremophilic Fungi (pp. 709-730). Springer, Singapore. https://doi.org/10.1007/978-981-16-4907-3_29 DOI: https://doi.org/10.1007/978-981-16-4907-3_29

Dogan, H. (2021). A New truffle species addition, Tuber macrosporum, to Turkish mycota. Trakya University Journal of Natural Sciences, 22 (2), 139-146. https://doi.org/10.23902/ trkjnat.873651 DOI: https://doi.org/10.23902/trkjnat.873651

Evangelista, A.G., Danielski, G.M., Corrêa, J.A.F., Cavalari, C.M. deA., et al. (2022). Carnobacterium as a bioprotective and potential probiotic culture to improve food quality, food safety, and human health – a scoping review. Critical Reviews in Food Science and Nutrition, 63 (24), 1–14. https://doi.org/10.1080/10408398.2022.2038079 DOI: https://doi.org/10.1080/10408398.2022.2038079

Funck Jensen, D., Dubey, M., Jensen, B., & Karlsson, M. (2022). Clonostachys rosea to control plant diseases. In J. and Ravensberg, W. (Eds.), Microbial bioprotectants for plant disease management (pp. 30-35). Burleigh Dodds Science Publishing. DOI: 10.19103/AS.2021.0093.14 DOI: https://doi.org/10.19103/AS.2021.0093.14

Garcia-Barreda, S., Marco, P., Bonito, G., Parladé, J., Sánchez, S., et al. (2023). Interannual dynamics of Tuber melanosporum and fungal communities in productive black truffle orchards amended with truffle nests. FEMS Microbiology Ecology, 99 (8), fiad084.https://doi.org/10.1093/femsec/fiad084 DOI: https://doi.org/10.1093/femsec/fiad084

García-Montero, L.G., Monleón, V.J., Valverde-Asenjo, I., Menta, C., & Kuyper, T.W. (2024). Niche construction by two ectomycorrhizal truffle species (Tubera estivum and T. melanosporum). Soil Biology and Biochemistry, 189, 109276.https://doi.org/10.1016/j.soilbio.2023.109276 DOI: https://doi.org/10.1016/j.soilbio.2023.109276

Giorgio, M., Niccolò, B.G.M., Benedetta, T., Luisa, M., Leonardo, B.F., et al. (2023). Fungal and bacterial diversity in the Tuber magnatum ecosystem and microbiome. Microbial Ecology, 85, 508-521. https://doi.org/10.1007/s00248-021-01950-1 DOI: https://doi.org/10.1007/s00248-021-01950-1

Herero de Aza, C., Armenteros, S., McDermott, J., Mauceri, S., Olaizola, J., et al. (2022). Fungal and Bacterial communities in tuber melanosporum plantations from northern Spain. Forests, 13 (3), 385. https://doi.org/10.3390/f13030385 DOI: https://doi.org/10.3390/f13030385

Ianiri, G., LeibundGut-Landmann, S., & Dawson Jr., L. T. (2022). Malassezia: A commensal, pathogen, and mutualist of human and animal skin. annual review of Microbiology, 76, 757-782. https://doi.org/10.1146/annurev-micro-040820-010114 DOI: https://doi.org/10.1146/annurev-micro-040820-010114

Ke, Z., Lan, M., Yang, T., Jia, W., Gou, Z., Chen, K., & Jiang, J. (2021). A Two-Component Monooxygenase for Continuous denitration and dechlorination of chlorinated 4-nitrophenol in Ensifer sp. strain 22-1. Environmental Research, 198, 111216. https://doi.org/10.1016/j.envres.2021.111216 DOI: https://doi.org/10.1016/j.envres.2021.111216

Khalifa, S.A.M., Farag, M.A., Yosri, N., Sabir, J.S.M., Saeed, A., et al. (2019). Truffles: from islamic culture to chemistry, pharmacology, and food trends in recent times. Trends in Food Science & Technology, 91, 193–218.https://doi.org/10.1016/ j.tifs.2019.07.008 DOI: https://doi.org/10.1016/j.tifs.2019.07.008

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35 (6), 1547–1549. https://doi.org/10.1093/molbev/msy096 DOI: https://doi.org/10.1093/molbev/msy096

Leonardi, M., Iotti, M., Pacioni, G., Hall, I.R., & Zambonelli, A. (2021a). Truffles: Biodiversity, ecological significances, and biotechnological applications. In A.M. Abdel-Azeem, A.N. Yadav, N. Yadav, Z. Usmani (Eds.), Industrially Important Fungi for Sustainable Development. Fungal Biology (pp. 107-146). Springer, Cham.https://doi.org/10.1007/978-3-030-67561-5 DOI: https://doi.org/10.1007/978-3-030-67561-5_4

Leonardi, P., Baroni, R., Puliga, F., Iotti, M., Salerni, E., Perini, C., & Zambonelli, A. (2021b). Co-occurrence of true truffle mycelia in Tuber magnatum fruiting sites. Mycorrhiza, 31, 389-394. https://doi.org/10.1007/s00572-021-01030-9 DOI: https://doi.org/10.1007/s00572-021-01030-9

Lin. X., Zhou, H., Zeng, F., Jiang, L., OkokonAtakpa, E., et al. (2022). A biosurfactant-producing yeast Rhodotorula sp.CC01 utilizing landfill leachate as nitrogen source and its broad degradation spectra of petroleum hydrocarbons. World Journal of Microbiology and Biotechnology, 38, 68. https://doi.org/10.1007/ s11274-022-03254-z DOI: https://doi.org/10.1007/s11274-022-03254-z

Litvinov, M.A. (2013). A determinant of microscopic soil fungi. Ripol Classic. Pp. 311 (Russian).

Liu, D., Chater, C.C.C., Yu, F., & Perez-Moreno, J. (2021a). Tuber pseudohimalayense ascomata-compartments strongly select their associated bacterial microbiome from nearby pine forest soils independently of their maturation stage. Pedobiologia, 87-88. https://doi.org/10.1016/j.pedobi.2021.150743 DOI: https://doi.org/10.1016/j.pedobi.2021.150743

Liu, D., He, X., Chater, C.C.C., Perez-Moreno, J., & Yu, F. (2021b). Microbiome community structure and functional gene partitioning in different micro-niches within a sporocarp-forming fungus. Frontiers in Microbiology, 12, 629352. https://doi.org/10.3389/fmicb.2021.629352 DOI: https://doi.org/10.3389/fmicb.2021.629352

Ljubojević, S., Vasilišin, L., Vučić, G., & Velemir, A. (2022). Morphological Characteristics of summer truffle (Tuber aestivumVittad.) from Bosnia and Herzegovina. Agricultural and Biological Sciences, 2, 9-20. https://doi.org/10.21303/2504-5695.2022.002382 DOI: https://doi.org/10.21303/2504-5695.2022.002382

Mesanza, N., Hernández, M., Raposo, R., &Iturritxa, E. (2021). First report of Mycosphaerella dearnessii, teleomorph of Lecanostictaacicola, in Europe. Plant Health Progress, 22 (4), 565-566. https://doi.org/10.1094/PHP-03-21-0060-BR DOI: https://doi.org/10.1094/PHP-03-21-0060-BR

Molinier, V., Tuinen, D., Chevalier, G., & Golotte, A. (2013). A multigene phylogeny demonstrates that Tuber aestivum and Tuber uncinatum are conspecific. Organisms Diversity & Evolution, 13 (4). https://doi.org/10.1007/s13127-013-0146-2 DOI: https://doi.org/10.1007/s13127-013-0146-2

Monaco, P., Toumi, M., Sferra, G., Tóth, E., Naclerio, G., & Bucci, A. (2020). The bacterial communities of Tuber aestivum: preliminary investigations in Molise region, southern Italy. Annual Microbiology, 70 (1), 37. https://doi.org/10.1186/s13213-020-01586-5 DOI: https://doi.org/10.1186/s13213-020-01586-5

Mrak, T., Grebenc, T., Friedrich, S., & Münzenberger, B. (2024). Description, identification, and growth of Tuber borchii Vittad. mycorrhized Pinus sylvestris L. seedlings on different lime contents. Mycorrhiza. https://doi.org/10.1007/s00572-023-01135-3 DOI: https://doi.org/10.1007/s00572-023-01135-3

Muszyński, A., Zarember, K.A., Heiss, C., Shiloach, J., Berg, L.J., et al. (2021). Granulibacterbethesdensis, a pathogen from patients with chronic granulomatous disease, produces a penta-acylated hypostimulatory glycero-d-talo-oct-2-ulosonic acid–lipid a glycolipid (ko-lipid a). International Journal of Molecular Sciences, 22 (7), 3303. https://doi.org/10.3390/ijms22073303 DOI: https://doi.org/10.3390/ijms22073303

Oliach, D., Castaño, C., Fischer, C.R., Barry-Etienne, D., Bonet, J.A., Colinas, C., & Oliva, J. (2022). Soil fungal community and mating type development of Tuber melanosporum in a 20-year chronosequence of black truffle plantations. Soil Biology and Biochemistry, 165, 108510. https://doi.org/10.1016/ j.soilbio.2021.108510 DOI: https://doi.org/10.1016/j.soilbio.2021.108510

Pacioni, G., & Leonardi, M. (2016). Truffle-inhabiting fungi. In A. Zambonelli, M. Iotti, , C. Murat, (Eds.), True Truffle (Tuber spp.) in the World (pp. 1-436). Springer, Cham. https://doi.org/10.1007/978-3-319-31436-5_17 DOI: https://doi.org/10.1007/978-3-319-31436-5_17

Perlińska-Lenart, U., Piłsyk, S., Gryz, E., Turło, J., Hilszczańska, D., & Kruszewska, J.S. (2020a). Identification of bacteria and fungi inhabiting fruiting bodies of burgundy truffle (Tuber aestivumVittad.). Archives of Microbiology, 202 (10), 2727-2738. https://doi.org/10.1007/s00203-020-02002-x

Perlińska-Lenart, U., Piłsyk, S., Gryz, E., Turło, J., Hilszczańska, D., & Kruszewska, J.S. (2020b). Identification of Bacteria and fungi inhabiting fruiting bodies of burgundy truffle (Tuber aestivumVittad.). Archives of Microbiology, 202 (10), 2727-2738. https://doi.org/10.1007/s00203-020-02002-x DOI: https://doi.org/10.1007/s00203-020-02002-x

Ramos-Pereira, J., Mareze, J., Patrinou, E., Santos, J.A., & López-Díaz, T.M. (2019). Polyphasic identification of Penicillium spp. isolated from Spanish semi-hard ripened cheeses. Food Microbiology, 84, 103253. https://doi.org/10.1016/j.fm.2019.103253 DOI: https://doi.org/10.1016/j.fm.2019.103253

Rennick, B., Benucci, G.M.N., Zhi-Yan, D. Healy, R., & Bonito, G. (2022). Tuber rugosum, a new species from northeastern North America: Slug mycophagy aides in electron microscopy of ascospores. Mycologia, 115 (3), 340-356.https://doi.org/10.1080/ 00275514.2023.2184983 DOI: https://doi.org/10.1080/00275514.2023.2184983

Riahi, H.S., Heidarieh, P., & Fatahi‐Bafghi, M. (2022). Genus Pseudonocardia: What we know about its biological properties, abilities and current application in biotechnology. Journal of Applied Microbiology, 132 (2), 890–906. https://doi.org/10.1111/ jam.15271 DOI: https://doi.org/10.1111/jam.15271

Rodríguez, I., Fraga, J., Noda, A. A., Mayet, M., Duarte, Y., Echevarria, E., & Fernández, C. (2014). An alternative and rapid method for the extraction of nucleic acids from ixodid ticks by potassium acetate procedure. Brazilian Archives of Biology and Technology, 57, 542-547. https://doi.org/10.1590/S1516-8913201402005 DOI: https://doi.org/10.1590/S1516-8913201402005

Rosenberg, E., DeLong, EF, & Lory, S. (2014). The Prokaryotes (4th ed.). Springer. Pp. 1013. DOI: https://doi.org/10.1007/978-3-642-30138-4

Satish, L., Barak. H., Keren, G., Yehezkel, G., Kushmaro, A., et al. (2022). The Microbiome structure of the symbiosis between the desert truffle Terfeziaboudieri and its host plant Helianthemum sessiliflorum. Jornal of Fungi, 8 (10), 1062. https://doi.org/10.3390/jof8101062 DOI: https://doi.org/10.3390/jof8101062

Siebyła, M. (2022). Metabolic activity of soil bacteria associated with summer truffle Tuber aestivum. Sylwan, 166 (1), 54-70. https://doi.org/10.26202/sylwan.2022003

Siebyła, M., & Szyp-Borowska, I. (2021). Comparison of bacterial communities in roots of selected trees with and without summer truffle (Tuber aestivum) ectomycorrhiza. Folia Forestalia Polonica, 63 (2), 97 – 111. https://doi.org/10.2478/ffp-2021-0011 DOI: https://doi.org/10.2478/ffp-2021-0011

Siebyła, M., & Szyp-Borowska, I. (2022). Bacterial communities inhabiting the ascomata of the ectomycorrhizal summer truffle (Tuber aestivum). Research Square. https://doi.org/10.21203/ rs.3.rs-2297836/v1 DOI: https://doi.org/10.21203/rs.3.rs-2297836/v1

Sillo, F., Vergine, M., Luvisi, A., Calvo, A., Petruzzelli, G., et al. (2022). Bacterial communities in the fruiting bodies and background soils of the white truffle Tuber magnatum. Frontiers in Microbiololgy, 13. https://doi.org/10.3389/fmicb.2022.864434 DOI: https://doi.org/10.3389/fmicb.2022.864434

Soledad, N.G., Sosa, A.L., Loyola, J.G., & Passone, M.A. (2023). Ecophysiological characteristics of the nematophagous fungus, Plectosphaerella plurivora, with biocontrol potential on Nacobbus aberranss. L. in tomato. European Journal of Plant Pathology. https://doi.org/10.21203/rs.3.rs-2762633/v1 DOI: https://doi.org/10.21203/rs.3.rs-2762633/v1

Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10 (3), 512–26. https://doi.org/10.1093/ oxfordjournals.molbev.a040023

Taschen, E., Callot, G., Sauve, M., Penuelas-samaniego, Y., Rousset, F., et al. (2022). Efficiency of the traditional practice of traps to stimulate black truffle production, and its ecological mechanisms. Scientific Reports, 12, 16201. https://doi.org/10.1038/s41598-022-19962-3 DOI: https://doi.org/10.1038/s41598-022-19962-3

Tejedor-Calvo, E., Amara, K., Reis, F.S., Barros, L., Martins, A., et al. (2021). Chemical composition and evaluation of antioxidant, antimicrobial and antiproliferative activities of Tuber and Terfeziatruffles. Food Research International, 140, 110071. https://doi.org/10.1016/j.foodres.2020.110071 DOI: https://doi.org/10.1016/j.foodres.2020.110071

Thomas, P.W., & Thomas, H.W. (2022). Mycorrhizal fungi and invertebrates: Impacts on Tuber melanosporum ascoscopre dispersal and lifecycle by isopod mycophagy. Food Webs, 33, e00260. https://doi.org/10.1016/j.fooweb.2022.e00260 DOI: https://doi.org/10.1016/j.fooweb.2022.e00260

Truong, C., Mujic, A., Healy, R., Kuhar, F., Furci, G., et al. (2017). How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytologist, 214, 913–919.https://doi.org/10.1111/nph.14509 DOI: https://doi.org/10.1111/nph.14509

Vahdatzadeh, M., Deveau, A., & Splivallo, R. (2019). Are bacteria responsible for aroma deterioration upon storage of the black truffle Tuber aestivum: amicrobiome and volatilome study. Food Microbiology, 84, 103251. https://doi.org/10.1016/j.fm.2019.103251 DOI: https://doi.org/10.1016/j.fm.2019.103251

Valencia, C.A., Pervaiz, M.A., Husami, A., Qian, Y., & Zhang. K. (2013). Sanger sequencing principles, history, and landmarks. In Next Generation Sequencing Technologies in Medical Genetics (pp. 3-11). Springer Briefs in Genetics. Springer, New York. https://doi.org/10.1007/978-1-4614-9032-6_1 DOI: https://doi.org/10.1007/978-1-4614-9032-6_1

Vlahova, V. (2021). Study of the successful approach to truffle growing in Europe - review. Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering, 10.

Vohník, M., Figura, T., & Réblová, M. (2022). Hyaloscyphagabretae and Hyaloscyphagryndleri spp. nov. (Hyaloscyphaceae, Helotiales), two new mycobionts colonizing conifer, ericaceous and orchid roots. Mycorrhiza, 32, 105-122. https://doi.org/10.1007/s00572-021-01064-z DOI: https://doi.org/10.1007/s00572-021-01064-z

Zafar, H., & Saier, M.H. (2021). Gut bacteroides species in health and disease. Gut Microbes, 13 (1), 1848158. https://doi.org/10.1080/19490976.2020.1848158 DOI: https://doi.org/10.1080/19490976.2020.1848158

Zambonelli, A., Iotti, M., & Piattoni, F. (2012). Chinese Tuber aestivum Sensu Lato in Europe. Open Mycology Journal, 6, 22–26.https://doi.org/10.2174/1874437001206010022 DOI: https://doi.org/10.2174/1874437001206010022

Zhang, J.P., Liu, P.G., & Chen, J. (2012). Tuber sinoaestivum sp. nov., an edible truffle from southwestern China. Mycotaxon, 122, 73–82. https://doi.org/10.5248/122.73 DOI: https://doi.org/10.5248/122.73

Downloads

Published

2024-03-15

How to Cite

Malygina, E. V., Imidoeva, N. A., Morgunova, M. M., Dmitrieva, M. E., Belyshenko, A. Y., Vlasova, A. A., Shelkovnikova, V. N., Telnova, T. Y., Konovalov, A. S., & Axenov-Gribanov, D. V. (2024). FIRST REPORT ON TRUFFLE-INHABITING FUNGI AND METAGENOMIC COMMUNITIES OF TUBER AESTIVUM COLLECTED IN RUSSIA. Journal of Experimental Biology and Agricultural Sciences, 12(1), 16–35. https://doi.org/10.18006/2024.12(1).16.35

Issue

Section

RESEARCH ARTICLES

Categories