Effect of Psidium guajava Juice on The Seminiferous Tubules Diameter and Epithelium Thickness in Rattus norvegicus Exposed by Lead Acetate
DOI:
https://doi.org/10.18006/2023.11(6).989.996Keywords:
Lead acetate, Rats, Seminiferous tubules, White guavaAbstract
Lead is one of humans and animals' most common and hazardous heavy metals. This study aimed to investigate the effect of white guava (Psidium guajava) fruit juice on the seminiferous tubule diameter and epithelium thickness in rats (Rattus norvegicus) exposed to lead acetate. The research design was a completely randomized design (CRD). A total of 25 male rats with an average weight of 200 grams were used for the study, divided into 5 treatment groups, each consisting of 5 rats. The treatments were as follows: the control group (C) was given distilled water orally; the T0 group was induced with lead acetate (50 mg/Kg BW) orally; the T1, T2, T3 groups were induced with lead acetate (50 mg/Kg BW) and then given 25%, 50%, and 100% concentration of white guava fruit juice, respectively. All the treatments were conducted for 14 days. The histopathology slides of the testis were made with HE staining, and the seminiferous tubule diameter and epithelium thickness were measured. The data were analyzed using One Way ANOVA and Duncan test (p<0.05). The results showed that the control group (C) which was given distilled water only had a seminiferous tubule diameter and epithelium thickness of 336.24±23.32 µm and 66.46±4.39 µm, respectively. The T0 group which was induced with lead acetate only showed a reduction in the diameter and epithelium thickness of seminiferous tubules (243.38±49.35 µm and 44.08±14.45 µm). The members of the T1, T2 and T3 groups showed positive effects on the diameter (323.49±22.82 µm; 314.41±13.04 µm; 325.04±16.88 µm, respectively) and epithelium thickness (56.36±3.36 µm; 60.50±3.81 µm; 66.744±9.50 µm, respectively). There was no significant difference reported between each group. The administration of guava juice to rats induced with lead acetate can positively affect the diameter and epithelium thickness of seminiferous tubules.
References
Abarikwu, S. O., Onuah, C. L., & Singh, S. K. (2020). Plants in the management of male infertility. Andrologia, 52(3), e13509. https://doi.org/10.1111/and.13509 DOI: https://doi.org/10.1111/and.13509
Abdrabou, M. I., Elleithy, E. M. M., Yasin, N. A. E., Shaheen, Y. M., & Galal, M. (2019). Ameliorative effects of Spirulina maxima and Allium sativum on lead acetate-induced testicular injury in male albino rats with respect to caspase-3 gene expression. Acta histochemica, 121(2), 198–206. https://doi.org/10.1016/ j.acthis.2018.12.006. DOI: https://doi.org/10.1016/j.acthis.2018.12.006
Al-Arif, M. A. (2018). Rancangan Percobaan. Surabaya: Lentera Jaya Madina.
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019. Article ID 6730305 | https://doi.org/10.1155/2019/6730305 DOI: https://doi.org/10.1155/2019/6730305
Al-Olayan, E. M., El-Khadragy, M. F., Metwally, D. M., & Abdel Moneim, A. E. (2014). Protective effects of pomegranate (Punica granatum) juice on testes against carbon tetrachloride intoxication in rats. BMC complementary and alternative medicine, 14, 164. https://doi.org/10.1186/1472-6882-14-164 DOI: https://doi.org/10.1186/1472-6882-14-164
Antonuccio, P., Micali, A., Puzzolo, D., Romeo, C., Vermiglio, G., et al. (2020). Nutraceutical Effects of Lycopene in Experimental Varicocele: An "In Vivo" Model to Study Male Infertility. Nutrients, 12(5), 1536. https://doi.org/10.3390/nu12051536 DOI: https://doi.org/10.3390/nu12051536
Apriliani, M., Nurcahyani, N., & Busman, H. (2013). Efekpemaparankebisinganterhadapjumlahsel-sel spermatogenic dan diameter tubulus seminiferous mencit (Mus musclus L)’. Seminar Nasional Sains&Teknologi V, Lampung, Lembaga Penelitian, Universitas Lampung.
Assi, M. A., Hezmee, M. N., Haron, A. W., Sabri, M. Y., & Rajion, M. A. (2016). The detrimental effects of lead on human and animal health. Veterinary world, 9(6), 660–671. https://doi.org/10.14202/vetworld.2016.660-671 DOI: https://doi.org/10.14202/vetworld.2016.660-671
Chin, J. H., Wong, K.H., & Yeong, S.O. (2020). Gastroprotective Effect of Chinese Cabbage (Brassica oleracea L. var. pekinensis) Juice in Sprague Dawley Rats. The Natural Products Journal, 10(5), 587-594. https://doi.org/10.2174/2210315509666190902111029 DOI: https://doi.org/10.2174/2210315509666190902111029
Corsetti, G., Romano, C., Stacchiotti, A., Pasini, E., & Dioguardi, F. S. (2017). Endoplasmic Reticulum Stress and Apoptosis Triggered by Sub-Chronic Lead Exposure in Mice Spleen: a Histopathological Study. Biological trace element research, 178(1), 86–97. https://doi.org/10.1007/s12011-016-0912-z DOI: https://doi.org/10.1007/s12011-016-0912-z
Dakappa, S. S., Adhikari, R., Timilsina, S.S., & Sajjekhan, S. (2013). A Review On The Medicinal Plant Psidium Guajava Linn. (Myrtaceae). Journal of drug delivery and theraupetic, 3(2). https://doi.org/10.22270/jddt.v3i2.404 DOI: https://doi.org/10.22270/jddt.v3i2.404
Diana, A. N., I'tishom, R., & Sudjarwo, S.A. (2017). Nigella Sativa Extract Improves Seminiferous Tubule Epithelial Thickness in Lead Acetate-Exposed Balb/c Mice. Folia Medica Indonesiana, 53(3), pp.180-184. DOI:10.20473/fmi.v53i3.6444 DOI: https://doi.org/10.20473/fmi.v53i3.6444
Dorostghoal, M., Seyyednejad, S. M., & Nejad, M. N. T. (2020). Cichorium intybus L. extract ameliorates testicular oxidative stress induced by lead acetate in male rats. Clinical and experimental reproductive medicine, 47(3), 161–167. https://doi.org/10.5653/ cerm.2019.03496 DOI: https://doi.org/10.5653/cerm.2019.03496
El-Magd, M. A., Kahilo, K. A., Nasr, N. E., Kamal, T., Shukry, M., & Saleh, A. A. (2017). A potential mechanism associated with lead-induced testicular toxicity in rats. Andrologia, 49(9), 10.1111/and.12750. https://doi.org/10.1111/and.12750 DOI: https://doi.org/10.1111/and.12750
Flecknell, P. (2015). Laboratory Animal Anasthesia (4th ed.). The Boulevard, Langford, Kidlington Oxford: Academic Press.
Freitas, M.L., & de Oliveira, R.A. (2018). Nutraceutical in male reproduction. Brazilian Journal of Veterinary Medicine, 40(1), e220118-e220118. https://doi.org/10.29374/2527-2179.bjvm220118
Hansda, A., Kumar, V., Anshumali, & Usmani, Z. (2014). Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective. Recent Research in Science and Technology, 6(1), 131-134. doi: 10.29374/2527-2179.bjvm220118. DOI: https://doi.org/10.29374/2527-2179.bjvm220118
Hogarth, C.A., & Griswold, M.D. (2010). The key role of vitamin A in spermatogenesis. The Journal of clinical investigation, 120(4), pp.956-962. DOI: 10.1172/JCI41303 DOI: https://doi.org/10.1172/JCI41303
Kiran Kumar, B., Prabhakara Rao, Y., Noble, T., Weddington, K., McDowell, V. P., Rajanna, S., & Bettaiya, R. (2009). Lead-induced alteration of apoptotic proteins in different regions of adult rat brain. Toxicology letters, 184(1), 56–60. https://doi.org/10.1016/j.toxlet.2008.10.023 DOI: https://doi.org/10.1016/j.toxlet.2008.10.023
Lovaković, B. T. (2020). Cadmium, arsenic, and lead: elements affecting male reproductive health. Current Opinion in Toxicology, 19, 7-14. https://doi.org/10.1016/j.cotox.2019.09.005 DOI: https://doi.org/10.1016/j.cotox.2019.09.005
Mao, B., Bu, T., Mruk, D., Li, C., Sun, F., & Cheng, C. Y. (2020). Modulating the Blood-Testis Barrier Towards Increasing Drug Delivery. Trends in pharmacological sciences, 41(10), 690–700. https://doi.org/10.1016/j.tips.2020.07.002 DOI: https://doi.org/10.1016/j.tips.2020.07.002
McClements, D. J., Li, F., & Xiao, H. (2015). The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability. Annual review of food science and technology, 6, 299–327. https://doi.org/10.1146/annurev-food-032814-014043 DOI: https://doi.org/10.1146/annurev-food-032814-014043
Meles, D. K., Mustofa, I., Wurlina, W., Susilowati, S., Utama, S., Suwasanti, N., & Putri, D. K. S. C. (2021). The Restorative Effect of Red Guava (Psidium guajava L.) Fruit Extract on Pulmonary Tissue of Rats (Rattus norvegicus) Exposed to Cigarette Smoke. Veterinary medicine international, 2021, 9931001. https://doi.org/10.1155/2021/9931001 DOI: https://doi.org/10.1155/2021/9931001
Naseer, S., Hussain, S., Naeem, N., Pervaiz, M., & Rahman, M. (2018). The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytoscience, 4(1), 1-8.https://doi.org/10.1186/s40816-018-0093-8. DOI: https://doi.org/10.1186/s40816-018-0093-8
Nurkarimah, D.A., Hestianah, E.P., Wahjuni, R.S., Hariadi, M., Kuncorojakti, S., & Hermadi, H.A. (2017). Effect of Propolis on Spermatogenic Cells Number and Diameter of Seminiferous Tubules in Male Mice (Mus musculus). KnE Life Sicences, 3(6): 677 – 683. https://doi.org/10.18502/kls.v3i6.1197 DOI: https://doi.org/10.18502/kls.v3i6.1197
Ramu, S., & Jeyendran, R.S. (2013). The hypo-osmotic swelling test for evaluation of sperm membrane integrity. In Totowa, N.J. (Eds.) Spermatogenesis (pp. 21-25). Humana Press. https://doi.org/10.1007/978-1-62703-038-0_3 DOI: https://doi.org/10.1007/978-1-62703-038-0_3
Selvakumar, K., Krishnamoorthy, G., Venkataraman, P., & Arunakaran, J. (2013). Reactive oxygen species induced oxidative stress, neuronal apoptosis and alternative death pathways. Advances in Bioscience and Biotechnology, 4(1). Article ID:26913. DOI:10.4236/abb.2013.41003 DOI: https://doi.org/10.4236/abb.2013.41003
Song, Q., & Li, J. (2015). A review on human health consequences of metals exposure to e-waste in China. Environmental pollution (Barking, Essex : 1987), 196, 450–461. https://doi.org/10.1016/ j.envpol.2014.11.004 DOI: https://doi.org/10.1016/j.envpol.2014.11.004
Sudjarwo, S. A., Anwar, C., Wardani, G., & Eraiko, K. (2019). Antioxidant and anti- caspase 3 effect of chitosan-Pinus merkusii extract nanoparticle against lead acetate-induced testicular toxicity in rat. Asian Pacific Journal of Reproduction, 8(1), 13-19. DOI: 10.4103/2305-0500.250418 DOI: https://doi.org/10.4103/2305-0500.250418
Susanti, N.F., I’tishom, R., & Khaerunnisa, S., (2020). Potensiekstrak Solanum betaceumterhadappeningkatanselspermato genik pada mencit (Mus musculus) yang dipapar timbal asetat. RisetInformasi Kesehatan, 9(1), 87-91. https://doi.org/10.30644/rik.v9i1.377 DOI: https://doi.org/10.30644/rik.v9i1.377
Trejo-Solís, C., Pedraza-Chaverrí, J., Torres-Ramos, M., Jiménez-Farfán, D., Cruz Salgado, A., et al. (2013). Multiple molecular and cellular mechanisms of action of lycopene in cancer inhibition. Evidence-based complementary and alternative medicine : eCAM, 2013, 705121. https://doi.org/10.1155/2013/705121 DOI: https://doi.org/10.1155/2013/705121
Tripathi, U. K., Chhillar, S., Kumaresan, A., Aslam, M. K., Rajak, S. K., et al. (2015). Morphometric evaluation of seminiferous tubule and proportionate numerical analysis of Sertoli and spermatogenic cells indicate differences between crossbred and purebred bulls. Veterinary world, 8(5), 645–650. https://doi.org/10.14202/vetworld.2015.645-650 DOI: https://doi.org/10.14202/vetworld.2015.645-650
Vidal, J. D., & Whitney, K. M. (2014). Morphologic manifestations of testicular and epididymal toxicity. Spermatogenesis, 4(2), e979099. https://doi.org/10.4161/21565562.2014.979099 DOI: https://doi.org/10.4161/21565562.2014.979099
Vigeh, M., Smith, D. R., & Hsu, P. C. (2011). How does lead induce male infertility?. Iranian journal of reproductive medicine, 9(1), 1–8.
Wang, H., Ji, Y. L., Wang, Q., Zhao, X. F., Ning, H., et al. (2013). Maternal lead exposure during lactation persistently impairs testicular development and steroidogenesis in male offspring. Journal of applied toxicology : JAT, 33(12), 1384–1394. https://doi.org/10.1002/jat.2795 DOI: https://doi.org/10.1002/jat.2795
Wardani, G., Ernawati, Eraiko, K., & Sudjarwo, S. A. (2019). The Role of Antioxidant Activity of Chitosan-Pinus merkusii Extract Nanoparticle in against Lead Acetate-Induced Toxicity in Rat Pancreas. Veterinary medicine international, 2019, 9874601. https://doi.org/10.1155/2019/9874601 DOI: https://doi.org/10.1155/2019/9874601
Widawati, T., Sudjarwo, S.A., & Hermadi, H.A. (2017). Protective Effect of Propolis Extract Against Lead Acetate Toxicity in Mice (Mus musculus) Testes. KnE Life Sciences, 3(6), 557-565. https://doi.org/10.18502/kls.v3i6.1183. DOI: https://doi.org/10.18502/kls.v3i6.1183
Xu, D., Hu, M. J., Wang, Y. Q., & Cui, Y. L. (2019). Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules (Basel, Switzerland), 24(6), 1123. https://doi.org/10.3390/molecules24061123 DOI: https://doi.org/10.3390/molecules24061123
Yang, H., Ma, M., Thompson, J. R., & Flower, R. J. (2018). Waste management, informal recycling, environmental pollution and
public health. Journal of epidemiology and community health, 72(3), 237–243. https://doi.org/10.1136/jech-2016-208597. DOI: https://doi.org/10.1136/jech-2016-208597
Zachary, J.F., & McGavin, M.D. eds., (2012). Pathologic Basis of Veterinary Disease 5. Elsevier Health Sciences.
Zhang, W., Wang, J., Chen, Y., Zheng, H., Xie, B., & Sun, Z. (2020). Flavonoid compounds and antibacterial mechanisms of different parts of white guava (Psidium guajava L. cv. Pearl). Natural product research, 34(11), 1621–1625. https://doi.org/10.1080/14786419.2018.1522313 DOI: https://doi.org/10.1080/14786419.2018.1522313
Downloads
Published
How to Cite
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.