Potential effect of fruit and flower extracts of Arbutus unedo L. on Tetrahymena pyriformis exposed to a cobalt-60 source
DOI:
https://doi.org/10.18006/2024.12(2).237.247Keywords:
Arbutus unedo, Cobalt-60 source, Gamma radiation, Tetrahymena pyriformis, Aqueous extract, Ethanolic extract, AntioxidantAbstract
Exposure of Tetrahymena pyriformis cultures to cobalt-60 for 72 h significantly impacted the cells' growth, appearance, and physiology. This study aims to investigate the protective effects of Arbutus unedo L flowers and fruit extracts on T. pyriformis against gamma radiation. Initially, aqueous and 50% ethanolic extracts of the fruits and flowers were prepared, and their cytotoxicity on the ciliate was evaluated. The irradiated ciliate's cellular viability and morphological aspect improved when a non-toxic concentration of 25 µg/mL was added to the growth medium. The addition of extracts restored glyceraldehyde-3-phosphate dehydrogenase and succinate dehydrogenase activities to their initial levels, similar to non-irradiated cells. In addition, the extracts reduced oxidative stress markers, such as lipid peroxidation, and decreased the activities of antioxidant defence enzymes, catalase, and superoxide dismutase. This may be attributed to the antioxidant properties of the extracts. Results of this study revealed that the flower extracts exhibited better protective effects than the fruit extracts, with superior antioxidant activity in the in-vitro DPPH scavenging assay. These results suggest that A. unedo flower extracts may have potential as exogenous radioprotective agents.
References
Aebi, H. (1984). Catalase in vitro. Methods in enzymology, 105, 121-126. https://doi.org/10.1016/s0076-6879(84)05016-3. DOI: https://doi.org/10.1016/S0076-6879(84)05016-3
Bajoub, A., Ennahli, N., Ouaabou, R., Chaji, S., et al. (2023). Investigation into Solar Drying of Moroccan Strawberry Tree (Arbutus unedo L.) Fruit: Effects on Drying Kinetics and Phenolic Composition. Applied Sciences, 13(2), 769. https://doi.org/10.3390/app13020769. DOI: https://doi.org/10.3390/app13020769
Başaran, N., Paslı, D., & Başaran, A. A. (2022). Unpredictable adverse effects of herbal products. Food and Chemical Toxicology, 159, 112762. https://doi.org/10.1016/j.fct.2021.112762. DOI: https://doi.org/10.1016/j.fct.2021.112762
Bliss, C. I. (1935). The calculation of the dosage‐mortality curve. Annals of Applied Biology, 22(1), 134-167. https:// doi. org/ 10. 1111/j.1744-7348. 1935. tb077 13.x. DOI: https://doi.org/10.1111/j.1744-7348.1935.tb07713.x
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999. DOI: https://doi.org/10.1006/abio.1976.9999
De Santis, S., Spada, F., & Magri, D. (2023). Geographic Range vs. Occurrence Records in Plant Distribution Mapping: The Case of Arbutus in the Old World. Forests, 14(5), 1010. https://doi.org/10.3390/f14051010. DOI: https://doi.org/10.3390/f14051010
Dowlath, M. J. H., Karuppannan, S. K., Sinha, P., Dowlath, N. S., et al. (2021). Effects of radiation and role of plants in radioprotection: A critical review. The Science of the total environment, 779, 146431. https://doi.org/10.1016/j.scitotenv.2021.146431. DOI: https://doi.org/10.1016/j.scitotenv.2021.146431
El Haouari, M., Assem, N., Changan, S., Kumar, M., et al. (2021). An Insight into Phytochemical, Pharmacological, and Nutritional Properties of Arbutus unedo L. from Morocco. Evidence-based complementary and alternative medicine :eCAM, 2021, 1794621. https://doi.org/10.1155/2021/1794621. DOI: https://doi.org/10.1155/2021/1794621
El-Shawi, O. E., El-Nashar, H. A., Abd El-Rahman, S. S., Eldahshan, O. A., et al. (2023). Protective effect of Acrocarpus fraxinifolius extract against hepatic fibrosis induced by gamma irradiation and carbon tetrachloride in albino rats. International Journal of Radiation Biology, 99(2), 270-280.https://doi.org/10.1080/09553002.2022.2087926. DOI: https://doi.org/10.1080/09553002.2022.2087926
Gebicki, J. M., & Nauser, T. (2021). Initiation and Prevention of Biological Damage by Radiation-Generated Protein Radicals. International journal of molecular sciences, 23(1), 396. https://doi.org/10.3390/ijms23010396. DOI: https://doi.org/10.3390/ijms23010396
Helluy, M., Gavinet, J., Prévosto, B., & Fernandez, C. (2021). Influence of light, water stress and shrub cover on sapling survival and height growth: the case of A. unedo, F. ornusand S. domestica under Mediterranean climate. European Journal of Forest Research, 140(3), 635-647.https://doi.org/10.1007/s10342-021-01356-1. DOI: https://doi.org/10.1007/s10342-021-01356-1
Iddar, A., El Mzibri, M., & Moutaouakkil, A. (2022). Effects of the Cobalt-60 gamma radiation on Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase. International journal of radiation biology, 98(2), 244-252. https://doi.org/10.1080/09553002.2022.2009142. DOI: https://doi.org/10.1080/09553002.2022.2009142
Iddar, A., Serrano, A., & Soukri, A. (2002). A phosphate-stimulated NAD(P)+-dependent glyceraldehyde-3-phosphate dehydrogenase in Bacillus cereus. FEMS microbiology letters, 211(1), 29-35. https://doi.org/10.1111/j.1574-6968.2002.tb11199.x. DOI: https://doi.org/10.1111/j.1574-6968.2002.tb11199.x
King, T. E. (1967). Preparations of succinate—cytochrome c reductase and the cytochrome b-c1 particle, and reconstitution of succinate-cytochrome c reductase. Methods in enzymology, 10, 216-225). DOI: https://doi.org/10.1016/0076-6879(67)10043-8
Lezoul, N. E. H., Belkadi, M., Habibi, F., & Guillén, F. (2020). Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants. Molecules (Basel, Switzerland), 25(20), 4672. https://doi.org/10.3390/molecules25204672. DOI: https://doi.org/10.3390/molecules25204672
Lim, J. (2022). Broad toxicological effects of per-/poly-fluoroalkyl substances (PFAS) on the unicellular eukaryote, Tetrahymena pyriformis. Environmental Toxicology and Pharmacology, 95, 103954. https://doi.org/10.1016/j.etap.2022.103954. DOI: https://doi.org/10.1016/j.etap.2022.103954
Mrabti, H. N., Bouyahya, A., Ed-Dra, A., Kachmar, M. R., et al. (2021). Polyphenolic profile and biological properties of Arbutus unedo root extracts. European Journal of Integrative Medicine, 42, 101266.https://doi.org/10.1016/j.eujim.2020.101266. DOI: https://doi.org/10.1016/j.eujim.2020.101266
Obrador, E., & Montoro, A. (2023). Ionizing Radiation, Antioxidant Response and Oxidative Damage: Radiomodulators. Antioxidants, 12(6), 1219. https://doi.org/10.3390/antiox12061219. DOI: https://doi.org/10.3390/antiox12061219
Paoletti, F., Aldinucci, D., Mocali, A., & Caparrini, A. (1986). A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Analytical biochemistry, 154(2), 536-541. https://doi.org/10.1016/0003-2697(86)90026-6. DOI: https://doi.org/10.1016/0003-2697(86)90026-6
Pardillo-Díaz, R., Pérez-García, P., Castro, C., Nunez-Abades, P., et al. (2022). Oxidative Stress as a Potential Mechanism Underlying Membrane Hyperexcitability in Neurodegenerative Diseases. Antioxidants (Basel, Switzerland), 11(8), 1511. https://doi.org/10.3390/antiox11081511. DOI: https://doi.org/10.3390/antiox11081511
Ponnampalam, E. N., Kiani, A., Santhiravel, S., Holman, B. W. B., et al. (2022). The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality-Invited Review. Animals, 12(23), 3279. https://doi.org/ 10.3390/ani12233279. DOI: https://doi.org/10.3390/ani12233279
Rodrigues-Pousada, C., Cyrne, M. L., & Hayes, D. (1979). Characterization of preribosomal ribonucleoprotein particles from Tetrahymena pyriformis. European journal of biochemistry, 102(2), 389-397. https://doi.org/10.1111/j.1432-1033.1979.tb04254.x. DOI: https://doi.org/10.1111/j.1432-1033.1979.tb04254.x
Sabraoui, T., Grina, F., Khider, T., Nasser, B., et al. (2022). Alleviate effect of pomegranate peel extract in ameliorating fluoride-induced cytotoxicity, oxidative stress in Tetrahymena pyriformis model. Biointerface Research in Applied Chemistry, 12(3), 3710-24.http://dx.doi.org/10.33263/BRIAC123.37103724. DOI: https://doi.org/10.33263/BRIAC123.37103724
Sadiq I. Z. (2023). Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation. Current molecular medicine, 23(1), 13-35. https://doi.org/10.2174/1566524022666211222161637. DOI: https://doi.org/10.2174/1566524022666211222161637
Samokyszyn, V. M., & Marnett, L. J. (1990). Inhibition of liver microsomal lipid peroxidation by 13-cis-retinoic acid. Free radical biology & medicine, 8(5), 491-496. https://doi.org/10.1016/0891-5849(90)90063-o. DOI: https://doi.org/10.1016/0891-5849(90)90063-O
Sanna, C., Chiocchio, I., Mandrone, M., Bonvicini, F., et al. (2023). Metabolomic analysis and bioactivities of Arbutus unedo leaves harvested across the seasons in different natural habitats of Sardinia (Italy). BMC Plant Biology, 23(1), 490.https://doi.org/ 10.1186/s12870-023-04497-0. DOI: https://doi.org/10.1186/s12870-023-04497-0
Şolpan, D., Ahmed Ibrahim, K. E., Elbashir, A. A., Mehrnia, M., et al. (2022). Radiolytic degradation of carbaryl in aqueous solution by gamma-irradiation/H2O2 process. Applied radiation and isotopes, 184, 110210. https://doi.org/10.1016/j.apradiso.2022.110210. DOI: https://doi.org/10.1016/j.apradiso.2022.110210
Supruniuk, E., Górski, J., & Chabowski, A. (2023). Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel, Switzerland), 12(2), 501. https://doi.org/10.3390/antiox12020501. DOI: https://doi.org/10.3390/antiox12020501
Suryanto, M. E., Vasquez, R. D., Roldan, M. J. M., Chen, K. H. C., et al. (2022). Establishing a High-Throughput Locomotion Tracking Method for Multiple Biological Assessments in Tetrahymena. Cells, 11(15), 2326.https://doi.org/10.3390/cells11152326. DOI: https://doi.org/10.3390/cells11152326
Tenuta, M. C., Deguin, B., Loizzo, M. R., Dugay, A., et al. (2020). Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus unedo L. Antioxidants (Basel, Switzerland), 9(2), 184. https://doi.org/10.3390/antiox9020184. DOI: https://doi.org/10.3390/antiox9020184
Wahabi, S., Rtibi, K., Atouani, A., & Sebai, H. (2023). Anti-Obesity Actions of Two Separated Aqueous Extracts From Arbutus (Arbutus unedo) and Hawthorn (Crataegus monogyna) Fruits Against High-Fat Diet in Rats via Potent Antioxidant Target. Dose-Response, 21(2), 15593258231179904. https://doi.org/ 10.1177/15593258231179904. DOI: https://doi.org/10.1177/15593258231179904
Wang, Q., Li, M., Zeng, N., Zhou, Y., et al. (2023). Succinate dehydrogenase complex subunit C: Role in cellular physiology and disease. Experimental Biology and Medicine, 248(3), 263-270.https://doi.org/10.1177/15353702221147567. DOI: https://doi.org/10.1177/15353702221147567
Wei, H., Movahedi, A., Yang, J., Zhang, Y., et al. (2022). Characteristics and molecular identification of glyceraldehyde-3-phosphate dehydrogenases in poplar. International Journal of Biological Macromolecules, 219, 185-198.https://doi.org/10.1016/ j.ijbiomac.2022.08.001. DOI: https://doi.org/10.1016/j.ijbiomac.2022.08.001
Wu, S., Tian, C., Tu, Z., Guo, J., et al. (2023). Protective effect of total flavonoids of Engelhardia roxburghiana Wall. leaves against radiation-induced intestinal injury in mice and its mechanism. Journal of Ethnopharmacology, 311, 116428. https://doi.org/10.1016/j.jep.2023.116428. DOI: https://doi.org/10.1016/j.jep.2023.116428
Zaynab, M., Sharif, Y., Abbas, S., Afzal, M. Z., et al. (2021). Saponin toxicity as key player in plant defense against pathogens. Toxicon , 193, 21-27. https://doi.org/10.1016/ j.toxicon.2021.01.009. DOI: https://doi.org/10.1016/j.toxicon.2021.01.009
Ziyadi, S., Iddar, A., Errafiy, N., Ridaoui, K., et al. (2022a). Protective Effect of Some Essential Oils Against Gamma-Radiation Damages in Tetrahymena pyriformis Exposed to Cobalt-60 source. Current microbiology, 79(9), 279. https://doi.org/10.1007/s00284-022-02924-3. DOI: https://doi.org/10.1007/s00284-022-02924-3
Ziyadi, S., Iddar, A., Kabine, M., El Mzibri, M., et al. (2022b). Changes in Growth, Morphology, and Physiology of Tetrahymena pyriformis Exposed to Continuous Cesium-137 and Cobalt-60 Gamma-Radiation. Current microbiology, 79(2), 61. https://doi.org/10.1007/s00284-021-02684-6. DOI: https://doi.org/10.1007/s00284-021-02684-6
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.