Performance of electrical energy monitoring data acquisition system for plant-based microbial fuel cell

Authors

  • Wilgince Apollon Universidad Autónoma de Nuevo León, Facultad de Agronomía, Departamento de Ingeniería Agrícola y de los Alimentos, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León, 66050, México
  • Alejandro Isabel Luna-Maldonado Universidad Autónoma de Nuevo León, Facultad de Agronomía, Departamento de Ingeniería Agrícola y de los Alimentos, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León, 66050, México
  • Juan Antonio Vidales-Contreras Universidad Autónoma de Nuevo León, Facultad de Agronomía, Departamento de Ingeniería Agrícola y de los Alimentos, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León, 66050, México
  • Humberto Rodríguez-Fuentes Universidad Autónoma de Nuevo León, Facultad de Agronomía, Departamento de Ingeniería Agrícola y de los Alimentos, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León, 66050, México
  • Juan Florencio Gómez-Leyva TecNM-Instituto Tecnológico de Tlajomulco (ITTJ), Laboratorio de Biología Molecular, Km 10 Carretera a San Miguel Cuyutlán, Tlajomulco de Zúñiga, Jalisco, C.P. 45640, México
  • Sathish-Kumar Kamaraj TecNM-Instituto Tecnológico El Llano Aguascalientes (ITEL), Laboratorio de Medio Ambiente Sostenible, Km.18 Carretera Aguascalientes-San Luis Potosí, El Llano Ags., C.P. 20330, México
  • Víctor Arturo Maldonado-Ruelas Universidad Politécnica de Aguascalientes (UPA), Departamento de Posgrado e Investigación, Calle Paseo San Gerardo No. 207, Fracc. San Gerardo, Aguascalientes, Ags. C.P. 20342, México.
  • Raúl Arturo Ortiz-Medina Universidad Politécnica de Aguascalientes (UPA), Departamento de Posgrado e Investigación, Calle Paseo San Gerardo No. 207, Fracc. San Gerardo, Aguascalientes, Ags. C.P. 20342, México.

DOI:

https://doi.org/10.18006/2022.10(2).387.395

Keywords:

Data acquisition system, Open circuit voltage, Polarization curve, Power density, Stevia rebaudiana

Abstract

Plant microbial fuel cell (Plant-MFC) is an emerging technology that uses the metabolic activity of electrochemically active bacteria (EABs) to continue the production of bioelectricity. Since its invention and to date, great efforts have been made for its application both in real-time and large-scale. However, the construction of platforms or systems for automatic voltage monitoring has been insufficiently studied. Therefore, this study aimed to develop an automatic real-time voltage data acquisition system, which was coupled with an ATMEGA2560 connected to a personal computer. Before the system operation started it was calibrated to obtain accurate data. During this experiment, the power generation performance of two types of reactors i.e. (i) Plant-MFC and (ii) control microbial fuel cell (C-MFC), was evaluated for 15 days. The Plant-MFC was planted with an herbaceous perennial plant (Stevia rebaudiana), electrode system was placed close to the plant roots at the depth of 20 cm. The results of the study have indicated that the Plant-MFC, was more effective and achieved higher bioelectricity generation than C-MFC. The maximum voltage reached with Plant-MFC was 850 mV (0.85 V), whereas C-MFC achieved a maximum voltage of 762 mV (0.772 V). Furthermore, the same reactor demonstrated a maximum power generation of 66 mW m¯2 on 10 min of polarization, while a power density with C-MFC was equal to 13.64 mW m¯2. S.rebaudiana showed a great alternative for power generation. In addition, the monitoring acquisition system was suitable for obtaining data in real-time. However, more studies are recommended to enhance this type of system.

References

Angelini, L.G., Ceccarini, L., Nassio Di Nasso, N., & Bonari, E. (2008). Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: analysis of productive characteristics and energy balance. Biomass and Bioenergy, 33(4), 635–643 DOI: https://doi.org/10.1016/j.biombioe.2008.10.005

Apollon, W., Kamaraj, S. K., Silos-Espino, H., Perales-Segovia, C., et al. (2020). Impact of Opuntia species plant bio-battery in a semi-arid environment: Demonstration of their applications. Applied Energy, 279, 115788 DOI: https://doi.org/10.1016/j.apenergy.2020.115788

Apollon, W., Luna-Maldonado, A. I., Kamaraj, S. K., Vidales-Contreras, J.A., et al. (2021). Progress and recent trends in photosynthetic assisted microbial fuel cells: A review. Biomass and Bioenergy, 148, 106028 DOI: https://doi.org/10.1016/j.biombioe.2021.106028

Apollon, W., Valera-Montero, L. L., Perales-Segovia, C., Maldonado-Ruelas, V.A., et al.(2022a). Effect of ammonium nitrate on novel cactus pear genotypes aided by biobattery in a semi-arid ecosystem. Sustainable Energy Technologies and Assessments, 49, 101730 DOI: https://doi.org/10.1016/j.seta.2021.101730

Apollon, W., Rusyn, I., González-Gamboa, N., Kuleshova T., et al. (2022b). Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. Science of the Total Environment, 817, 153055 DOI: https://doi.org/10.1016/j.scitotenv.2022.153055

Arulmani, S. R. B., Gnanamuthu, H. L., Kandasamy, S., Govindarajan, G., et al. (2021). Sustainable bioelectricity production from Amaranthus viridis and Triticum aestivum mediated plant microbial fuel cells with efficient electrogenic bacteria selections. Process Biochemistry, 107, 27–37 DOI: https://doi.org/10.1016/j.procbio.2021.04.015

Attia, Y.A., Samer, M., Mohamed, M.S.M., Moustafa, E., et al. (2022). Nanocoating of microbial fuel cell electrodes for enhancing bioelectricity generation from wastewater. Biomass Conversion and Biorefinery.https://doi.org/10.1007/s13399-022-02321-7 DOI: https://doi.org/10.1007/s13399-022-02321-7

Choudhury, P., Ray, R. N., Bandyopadhyay, T. K., Basak, B., et al. (2021). Process engineering for stable power recovery from dairy wastewater using microbial fuel cell. International Journal of Hydrogen Energy, 46(4), 3171–3182 DOI: https://doi.org/10.1016/j.ijhydene.2020.06.152

Helder, M., Strik, D.P.B.T.B., Hamelers, H.V.M., Kuhn, A.J., et al. (2010). Concurrent bioelectricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 101, 3541–3547. DOI: https://doi.org/10.1016/j.biortech.2009.12.124

Kuleshova, T. E., Gall’, N. R., Galushko, A. S., & Panova, G. G. (2021). Electrogenesis in plant–microbial fuel cells in parallel and series Connections. Technical Physics,66, 496–504 DOI: https://doi.org/10.1134/S1063784221030142

Kumar, V.K., Man mohan, K., Manangath, S.P., & Gajalakshmi, S. (2018). Terracotta Separator based Plant Microbial Fuel Cell for Bioelectricity and Catholyte Production. International Journal of Applied Engineering Research,13, 14948-14955

Kumar, V.K., Man mohan, K., Sreelakshmi, P.M., Manju, P., & Gajalakshmi, S. (2020). Resource recovery from paddy field using plant microbial fuel cell. Process Biochemistry, 99, 270–281. DOI: https://doi.org/10.1016/j.procbio.2020.09.015

Lam, S. M., Sin, J. C., Zeng, H., Lin, H., et al. (2022). Ameliorating Cu2+ reduction in microbial fuel cell with Z-scheme BiFeO3 decorated on flower-like ZnO composite photocathode. Chemosphere, 287,132384. DOI: https://doi.org/10.1016/j.chemosphere.2021.132384

Li, J., Liu, G., Chen, D., Li. C., et al., (2022). Enhanced microbial electrochemical systems performance by optimizing the “anode-collector” collection mode: from enhancement mechanism to construction atrategy. ACS ES & T Engineering, 2, 263–270. DOI: https://doi.org/10.1021/acsestengg.1c00396

Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., et al. (2006). Microbial Fuel Cells: Methodology and Technology. Environmental Science & Technology, 40 (17), 5181–5192. DOI: https://doi.org/10.1021/es0605016

Luo, F.L. (2009). Personal Communication. Research Center Jülich, ICG-3, Jülich, Germany.

Maddalwara, S., Nayaka, K.N., Kumar, M., & Singh, L. (2021). Plant microbial fuel cell: Opportunities, challenges, and prospects. Bioresource Technology, 341, 125772. DOI: https://doi.org/10.1016/j.biortech.2021.125772

Maldonado-Ruelas, V.A., Ortiz–Medina, R.A., Apollon, W., & Silos-Espino, H. (2018). Design and implementation of a voltage acquisition system for nopal-based fuel cells. Revista de Energías Renovables, 2(7), 19–25.

Moqsud, M. A., Yoshitake, J., Bushra, Q. S., Hyodo, M., Omine, K., Strik, D. (2015). Compost in plant microbial fuel cell for bioelectricity generation. Waste management, 36, 63-69. DOI: https://doi.org/10.1016/j.wasman.2014.11.004

Nasrabadi, A. M., & Moghimi, M. (2022). Energy analysis and optimization of a biosensor-based microfluidic microbial fuel cell using both genetic algorithm and neural network PSO. International Journal of Hydrogen Energy, 47(7), 4854–4867. DOI: https://doi.org/10.1016/j.ijhydene.2021.11.125

Prabha, J., Kumar, M., & Tripathi, R. (2021). Opportunities and challenges of utilizing energy crops in phytoremediation of environmental pollutants: A review. In Kumar, V., Saxena, G., Shah, M. P. (Eds.), Bioremediation for Environmental Sustainability (pp. 383–396). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-820318-7.00017-4

Ramadan, B. S., Hidayat, S., & Iqbal, R. (2017). Plant microbial fuel cells (PMFCs): green technolog for achieving sustainable water and energy. In Proceedings book of the 7th basic science international conference basics science for improving survival and quality of life; mar 7-8; malang, Indonesia. p. 82-85.

Rusyn, I. B., & Hamkalo, К.R. (2020). Electro-biosystems with Mosses on Green Roofs. Environmental Research, Engineering and Management, 76(1), 20-31. DOI: https://doi.org/10.5755/j01.erem.76.1.22212

Rusyn, I. B., Vakuliuk, V. V., & Burian, O. V. (2019). Prospects of use of Caltha palustris in soil plant-microbial eco-electrical biotechnology. Regulatory Mechanisms in Biosystems, 10(2), 233-238. DOI: https://doi.org/10.15421/021935

Rusyn, R. (2021). Role of microbial community and plant species in performance of plant microbial fuel cells. Renewable and Sustainable Energy Reviews, 152, 111697. DOI: https://doi.org/10.1016/j.rser.2021.111697

Rusyn, I.B., Medvediev, O.V., & Valko, B.T. (2021). Enhancement of bioelectric parameters of multi-electrode plant–microbial fuel cells by combining of serial and parallel connection. International Journal of Environmental Science and Technology, 18, 1323–1334. DOI: https://doi.org/10.1007/s13762-020-02934-3

Sabin, J. M., Leverenz, H., & Bischel, H. N. (2022). Microbial fuel cell treatment energy-offset for fertilizer production from human urine. Chemosphere, 294, 133594. DOI: https://doi.org/10.1016/j.chemosphere.2022.133594

Saeed, T., Majed, N., Kumar Yadav, A., Hasan, A., & Jihad Miah, M. (2022). Constructed wetlands for drained wastewater treatment and sludge stabilization: Role of plants, microbial fuel cell and earthworm assistance. Chemical Engineering and Technology, 430, 132907. DOI: https://doi.org/10.1016/j.cej.2021.132907

Schröder, U. (2012). Cover Picture: Microbial Fuel Cells and Microbial Electrochemistry: ChemSusChem, 5, 957. DOI: https://doi.org/10.1002/cssc.201290024

Sekar, N., & Ramasamy, R. P. (2015). Recent advances in photosynthetic energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 22, 19–33. DOI: https://doi.org/10.1016/j.jphotochemrev.2014.09.004

Sharma, P., Talekar, G. V., & Mutnuri, S. (2021). Demonstration of energy and nutrient recovery from urine by field-scale microbial fuel cell system. Process Biochemistry, 101, 89–98. DOI: https://doi.org/10.1016/j.procbio.2020.11.014

Strik, D.P.B.T.B., Hamelers, H.V.M., Snel, J.F.H., & Buisman, C.J.N. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32, 870–876. DOI: https://doi.org/10.1002/er.1397

Sudirjo, E., Buisman, C.J.N., & Strik, D.P.B.T.B. (2019a). Activated Carbon Mixed with Marine Sediment is Suitable as Bioanode Material for Spartina anglica Sediment/Plant Microbial Fuel Cell: Plant Growth, Electricity Generation, and Spatial Microbial Community Diversity. Water, 11(9), 1810. DOI: https://doi.org/10.3390/w11091810

Sudirjo, E., Pim de Jager, Buisman, C. J. N., & Strik, D.P.B.T.B. (2019b). Performance and Long-Distance Data Acquisition via LoRa Technology of a Tubular Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan, Indonesia. Sensor, 19, 46–47. DOI: https://doi.org/10.3390/s19214647

Syed, Z., Sonu, K., & Sogani, M. (2021). Cattle manure management using microbial fuel cells for green energy generation. Biofuels Bioproduct and Biorefining, 16(2), 460-470. DOI: https://doi.org/10.1002/bbb.2293

Wang, Xu, D., Zhang, Q., Liu, T., & Tao, Z. (2022). Simultaneous removal of heavy metals and bioelectricity generation in microbial fuel cell coupled with constructed wetland: an optimization study on substrate and plant types. Environmental Science and Pollution Research, 29, 768–778. DOI: https://doi.org/10.1007/s11356-021-15688-3

Wetser, K., Sudirjo, E., Buisman, C. J. N., & Strik, D. P. B. T. B. (2015). Electricity generation by a plant microbial fuel cell with an

integrated oxygen reducing biocathode. Applied Energy, 137, 151–157.

Zhang, K., Wu, X., Wang, W., Luo, H., et al. (2021). Effects of plant location on methane emission, bioelectricity generation, pollutant removal and related biological processes in microbial fuel cell constructed wetland. Journal of Water Process Engineering, 43, 102283. DOI: https://doi.org/10.1016/j.jwpe.2021.102283

Downloads

Published

2022-04-30

How to Cite

Apollon, W., Luna-Maldonado, A. I. ., Vidales-Contreras, J. A. ., Rodríguez-Fuentes, H. ., Gómez-Leyva, J. F. ., Kamaraj, S.-K. ., Maldonado-Ruelas, V. A. ., & Ortiz-Medina, R. A. . (2022). Performance of electrical energy monitoring data acquisition system for plant-based microbial fuel cell. Journal of Experimental Biology and Agricultural Sciences, 10(2), 387–395. https://doi.org/10.18006/2022.10(2).387.395

Issue

Section

RESEARCH ARTICLES

Categories