Exploration and Profiling of Potential Thermo-alkaliphilic Bacillus licheniformis and Burkholderia sp. from varied Soil of Delhi region, India and their Plant Growth-Promoting Traits
DOI:
https://doi.org/10.18006/2024.12(1).60.75Keywords:
PGPR, Sustainable Agriculture, Crop Health, Oryza sativaAbstract
Soilless cultivation has emerged as a fundamental alternative for large-scale vegetable production because it generates high-quality yields and uses resources efficiently. While plant growth-promoting bacteria (PGPB) are known to enhance growth and physiological aspects in crops grown in soil, their application in soilless cultivation has been relatively less explored. This study aimed to isolate potential PGPBs from soil samples collected from five locations in and around the Delhi-National Capital Region (NCR), India, which were further screened for significant PGPB attributes. Among these, 51 isolated were selected for assessing the impact on Oryza sativa (rice) growth and yield grown on a hydroponic set. The results indicated that isolates AFSI16 and ACSI02 significantly improved the physiological parameters of the plants. For instance, treatment with AFSI16 showed a 23.27% increase in maximum fresh shoot mass, while ACSI02 resulted in a 46.8% increase in root fresh mass. Additionally, ACSI02 exhibited the highest shoot length (34.07%), whereas AFSI16 exhibited the longest root length (46.08%) in O.sativa. Treatment with AFSI16 also led to significant increases in total protein content (4.94%) and chlorophyll content (23.44%), while ACSI02 treatment showed a 13.48% increase in maximum carotenoid content in the leaves. The potential PGPBs were identified through 16S rRNA sequencing, as the two most effective strains, AFSI16 and ACSI02, belonged to thermo-alkaliphilic Bacillus licheniformis and Burkholderia sp., respectively. This study demonstrated the potential of these identified PGPB strains in enhancing crop performance, specifically in soilless cultivation systems.
References
Aanniz, T., Ouadghiri, M., Melloul, M., Swings, J., Elfahime, E., et al. (2015). Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Brazilian Journal of Microbiology, 46(2), 443–453. https://doi.org/10.1590/S1517-838246220140219 DOI: https://doi.org/10.1590/S1517-838246220140219
Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26(1), 1–20. https://doi.org/10.1016/j.jksus.2013.05.001 DOI: https://doi.org/10.1016/j.jksus.2013.05.001
Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision.
Arditti, J., & Dunn, A. (1969). Experimental plant physiology: experiments in cellular and plant physiology. Holt, Rinehart and Winston publication.
Arimurti, A. R. R., Rohmayani, V., Romadhon, N., Rahmani, T. P. D., Watson, L. J., Wahyuni, K. S., & Ulumiya, N. (2022). The potency of bacteria isolated from the hydroponic rockwool of field mustard (Brassica rapa L.) for nitrogen fixation and indole acetic acid (IAA) production. Biogenesis: Jurnal Ilmiah Biologi, 10(1), 112-120. DOI: https://doi.org/10.24252/bio.v10i1.28451. DOI: https://doi.org/10.24252/bio.v10i1.28451
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1 DOI: https://doi.org/10.1104/pp.24.1.1
Arora, P. K. (Ed.). (2020). Microbial technology for health and environment (Vol. 22). Springer Singapore. https://doi.org/10.1007/978-981-15-2679-4 DOI: https://doi.org/10.1007/978-981-15-2679-4
Ashworth, J., & Mrazek, K. (1995). "Modified Kelowna" test for available phosphorus and potassium in soil. Communications in Soil Science and Plant Analysis, 26(5–6), 731–739. https://doi.org/10.1080/00103629509369331 DOI: https://doi.org/10.1080/00103629509369331
Awlachew, Z. T., & Mengistie, G. Y. (2022). Growth promotion of rice (Oryza sativa L.) seedlings using plant growth-promoting rhizobacteria (Pgpr) isolated from northwest ethiopiaEhiopia. Advances in Agriculture, 2022, 1–8. https://doi.org/10.1155/2022/ 1710737 DOI: https://doi.org/10.1155/2022/1710737
Baha, N., & Bekki, A. (2015). An approach of improving plant salt tolerance of lucerne (Medicago sativa) grown under salt stress: Use of bio-inoculants. Journal of Plant Growth Regulation, 34(1), 169–182. https://doi.org/10.1007/s00344-014-9455-8 DOI: https://doi.org/10.1007/s00344-014-9455-8
Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (Pgpr) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140 DOI: https://doi.org/10.3390/su13031140
Behera, S. K., & Shukla, A. K. (2015). Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of india. Land Degradation & Development, 26(1), 71–79. https://doi.org/10.1002/ldr.2306 DOI: https://doi.org/10.1002/ldr.2306
Bhardwaj, P., Chauhan, A., Ranjan, A., Mandzhieva, S. S., Minkina, T., Mina, U., Rajput, V. D., & Tripathi, A. (2023b). Assessing growth-promoting activity of bacteria isolated from municipal waste compost on Solanum lycopersicum L. Horticulturae, 9(2), 214. https://doi.org/10.3390/horticulturae9020214 DOI: https://doi.org/10.3390/horticulturae9020214
Bhardwaj, P., Sharma, R. K., Chauhan, A., Ranjan, A., Rajput, V. D., et al. (2023a). Assessment of heavy metal distribution and health risk of vegetable crops grown on soils amended with municipal solid waste compost for sustainable urban agriculture. Water, 15(2), 228. https://doi.org/10.3390/w15020228 DOI: https://doi.org/10.3390/w15020228
Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils: Soil Science, 59(1), 39–46. https://doi.org/10.1097/00010694-194501000-00006 DOI: https://doi.org/10.1097/00010694-194501000-00006
Brock, T. D. (Ed.) (1978). Thermophilic microorganisms and life at high temperatures. Springer New York. https://doi.org/10.1007/ 978-1-4612-6284-8 DOI: https://doi.org/10.1007/978-1-4612-6284-8
Chauhan, A., & Jindal, T. (2020). Microbiological Methods for Water, Soil and Air Analysis. In A. Chauhan, & T. Jindal (Eds.), Microbiological Methods for Environment, Food and Pharmaceutical Analysis (pp. 93-196). Springer, Cham. https://doi.org/10.1007/978-3-030-52024-3_7 DOI: https://doi.org/10.1007/978-3-030-52024-3_7
Chen, Y. S., Chen, S. C., Kao, C. M., & Chen, Y. L. (2003). Effects of soil pH, temperature and water content on the growth of Burkholderia pseudomallei. Folia Microbiologica, 48(2), 253–256. https://doi.org/10.1007/BF02930965 DOI: https://doi.org/10.1007/BF02930965
Connor, N., Sikorski, J., Rooney, A. P., Kopac, S., Koeppel, A. F., et al. (2010). Ecology of speciation in the genus Bacillus. Applied and Environmental Microbiology, 76(5), 1349-1358. DOI: https://doi.org/10.1128/AEM.01988-09
De La Fuente Cantó, C., Simonin, M., King, E., Moulin, L., Bennett, M. J., Castrillo, G., & Laplaze, L. (2020). An extended root phenotype: The rhizosphere, its formation and impacts on plant fitness. The Plant Journal, 103(3), 951–964. https://doi.org/10.1111/tpj.14781 DOI: https://doi.org/10.1111/tpj.14781
De O. Nunes, P. S., De Medeiros, F. H. V., De Oliveira, T. S., De Almeida Zago, J. R., & Bettiol, W. (2023). Bacillus subtilis and Bacillus licheniformis promote tomato growth. Brazilian Journal of Microbiology, 54(1), 397–406. https://doi.org/10.1007/s42770-022-00874-3 DOI: https://doi.org/10.1007/s42770-022-00874-3
Delshadi, S., Ebrahimi, M., & Shirmohammadi, E. (2017). Effectiveness of plant growth promoting rhizobacteria on Bromus tomentellus Boiss seed germination, growth and nutrients uptake under drought stress. South African Journal of Botany, 113, 11–18. https://doi.org/10.1016/j.sajb.2017.07.006 DOI: https://doi.org/10.1016/j.sajb.2017.07.006
Di Benedetto, N. A., Corbo, M. R., Campaniello, D., Cataldi, M. P., Bevilacqua, A., Sinigaglia, M., & Flagella, Z. (2017). The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS microbiology, 3(3), 413. DOI: https://doi.org/10.3934/microbiol.2017.3.413
Ehmann, A. (1977). The van URK-Salkowski reagent—A sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A, 132(2), 267–276. https://doi.org/10.1016/S0021-9673(00)89300-0 DOI: https://doi.org/10.1016/S0021-9673(00)89300-0
El-Meihy, R. M., Abou-Aly, H. E., Youssef, A. M., Tewfike, T. A., & El-Alkshar, E. A. (2019). Efficiency of heavy metals-tolerant plant growth promoting bacteria for alleviating heavy metals toxicity on sorghum. Environmental and Experimental Botany, 162, 295–301. https://doi.org/10.1016/j.envexpbot.2019.03.005 DOI: https://doi.org/10.1016/j.envexpbot.2019.03.005
Fascella, G., Montoneri, E., & Francavilla, M. (2018). Biowaste versus fossil sourced auxiliaries for plant cultivation: The Lantana case study. Journal of Cleaner Production, 185, 322–330. https://doi.org/10.1016/j.jclepro.2018.02.242 DOI: https://doi.org/10.1016/j.jclepro.2018.02.242
Gang, S., Sharma, S., Saraf, M., Buck, M., & Schumacher, J. (2019). Analysis of indole-3-acetic acid (Iaa) production in Klebsiella by LC-MS/MS and the Salkowski method. Bio-Protocol, 9(9). https://doi.org/10.21769/BioProtoc.3230 DOI: https://doi.org/10.21769/BioProtoc.3230
Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60(4), 579–598. https://doi.org/10.1007/s13213-010-0117-1 DOI: https://doi.org/10.1007/s13213-010-0117-1
Hirel, B., Tétu, T., Lea, P. J., & Dubois, F. (2011). Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability, 3(9), 1452–1485. https://doi.org/10.3390/su3091452 DOI: https://doi.org/10.3390/su3091452
Hussain, Q., Liu, Y., Zhang, A., Pan, G., Li, L., Zhang, X., Song, X., Cui, L., & Jin, Z. (2011). Variation of bacterial and fungal community structures in the rhizosphere of hybrid and standard rice cultivars and linkage to CO2 flux: Rice cultivars effect on microbial communities and CO2 flux. FEMS Microbiology Ecology, 78(1), 116–128. https://doi.org/10.1111/j.1574-6941.2011.01128.x DOI: https://doi.org/10.1111/j.1574-6941.2011.01128.x
Ikan, R. (1991). Natural products: A laboratory guide (2nd ed). Academic Press.
Islam, S., Akanda, A. M., Prova, A., Islam, Md. T., & Hossain, Md. M. (2016). Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01360 DOI: https://doi.org/10.3389/fmicb.2015.01360
Kaushik, P., Abhishek, C., & Pankaj, G. (2009). Screening of Lyngbya majuscula for potential antibacterial activity and HPTLC analysis of active methanolic extract. Journal of Pure and Applied Microbiology, 3(1), 169-174.
Kawasaki, Y., Aoki, M., Makino, Y., Sakai, H., Tsuboi, Y., et al. (2011). Characterization of moderately thermophilic bacteria isolated from saline hot spring in Japan. Microbiology Indonesia, 5(2), 2-2. DOI: https://doi.org/10.5454/mi.5.2.2
Khan, M. A., Hamayun, M., Asaf, S., Khan, M., Yun, B.-W., Kang, S.M., & Lee, I.J. (2021). Rhizospheric bacillus Bacillus spp. Rescues plant growth under salinity stress via regulating gene expression, endogenous hormones, and antioxidant system of oryza Oryza sativa l. Frontiers in Plant Science, 12, 665590. https://doi.org/10.3389/fpls.2021.665590 DOI: https://doi.org/10.3389/fpls.2021.665590
Kumar, A., Kumar, A., Devi, S., Patil, S., Payal, C., & Negi, S. (2012). Isolation, screening and characterization of bacteria from Rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent research in science and technology, 4(1), 1-5.
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). Mega x: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 DOI: https://doi.org/10.1093/molbev/msy096
Kumari, M., Swarupa, P., & Kumar, A. (2022). Validation and evaluation of plant growth promoting potential of rhizobacteria towards paddy plants. Journal of Pure and Applied Microbiology, 16(2), 1209–1225. https://doi.org/10.22207/JPAM.16.2.50 DOI: https://doi.org/10.22207/JPAM.16.2.50
Lahlali, R., Mchachti, O., Radouane, N., Ezrari, S., Belabess, Z., Khayi, S., Mentag, R., Tahiri, A., & Barka, E. A. (2020). The potential of novel bacterial isolates from natural soil for the control of brown rot disease (Monilinia fructigena) on apple fruits. Agronomy, 10(11), 1814. https://doi.org/10.3390/ agronomy10111814 DOI: https://doi.org/10.3390/agronomy10111814
Lau, E. T., Tani, A., Khew, C. Y., Chua, Y. Q., & Hwang, S. S. (2020). Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Microbiological Research, 240, 126549. https://doi.org/10.1016/j.micres.2020.126549 DOI: https://doi.org/10.1016/j.micres.2020.126549
Lee, S., & Lee, J. (2015). Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. Scientia Horticulturae, 195, 206–215. https://doi.org/10.1016/j.scienta.2015.09.011 DOI: https://doi.org/10.1016/j.scienta.2015.09.011
Li, X., Cai, Y., Liu, D., Ai, Y., Zhang, M., et al. (2019). Occurrence, fate, and transport of potentially toxic metals (Ptms) in an alkaline rhizosphere soil-plant (Maize, zea Zea mays l.) system: The role of Bacillus subtilis. Environmental Science and Pollution Research, 26(6), 5564–5576. https://doi.org/10.1007/ s11356-018-4031-6 DOI: https://doi.org/10.1007/s11356-018-4031-6
Liu, J., Ma, K., Ciais, P., & Polasky, S. (2016). Reducing human nitrogen use for food production. Scientific Reports, 6(1), 30104. https://doi.org/10.1038/srep30104 DOI: https://doi.org/10.1038/srep30104
Manachini, P. L., Fortina, M. G., Levati, L., & Parini, C. (1998). Contribution to phenotypic and genotypic characterization of Bacillus licheniformis and description of new genomovars. Systematic and applied microbiology, 21(4), 520-529. DOI: https://doi.org/10.1016/S0723-2020(98)80064-7
Meena, V. S., Mishra, P. K., Bisht, J. K., & Pattanayak, A. (Eds.). (2017). Agriculturally important microbes for sustainable agriculture: volume 2: applications in crop production and protection. Springer Singapore. DOI: https://doi.org/10.1007/978-981-10-5343-6
Mehta, S., & Nautiyal, C. S. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, 43(1), 51–56. https://doi.org/10.1007/s002840010259 DOI: https://doi.org/10.1007/s002840010259
Mhete, M., Eze, P. N., Rahube, T. O., & Akinyemi, F. O. (2020). Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Scientific African, 7, e00246. https://doi.org/10.1016/j.sciaf.2019.e00246 DOI: https://doi.org/10.1016/j.sciaf.2019.e00246
Minkina, T., Sushkova, S., Delegan, Y., Bren, A., Mazanko, M., et al. (2023). Effect of chicken manure on soil microbial community diversity in poultry keeping areas. Environmental Geochemistry and Health, 45(12), 9303–9319. https://doi.org/10.1007/s10653-022-01447-x DOI: https://doi.org/10.1007/s10653-022-01447-x
Mohammad, B. T., Al Daghistani, H. I., Jaouani, A., Abdel-Latif, S., & Kennes, C. (2017). Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes. International journal of microbiology, 2017, 6943952. https://doi.org/10.1155/2017/6943952 DOI: https://doi.org/10.1155/2017/6943952
O'Hair, J., Jin, Q., Yu, D., Poe, N., Li, H., Thapa, S., Zhou, S., & Huang, H. (2020). Thermophilic and alkaliphilic bacillus Bacillus licheniformis ynp5-tsu as an ideal candidate for 2,3-butanediol production. ACS Sustainable Chemistry & Engineering, 8(30), 11244–11252. https://doi.org/10.1021/acssuschemeng.0c02759 DOI: https://doi.org/10.1021/acssuschemeng.0c02759
Olsson, K., Keis, S., Morgan, H. W., Dimroth, P., & Cook, G. M. (2003). Bioenergetic properties of the thermoalkaliphilicbacillus sp. Strain ta2. A1. Journal of Bacteriology, 185(2), 461–465. https://doi.org/10.1128/JB.185.2.461-465.2003 DOI: https://doi.org/10.1128/JB.185.2.461-465.2003
Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signaling & Behavior, 4(8), 701–712. https://doi.org/10.4161/psb.4.8.9047 DOI: https://doi.org/10.4161/psb.4.8.9047
Pande, A., Pandey, P., Mehra, S., Singh, M., & Kaushik, S. (2017). Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. Journal of Genetic Engineering and Biotechnology, 15(2), 379–391. https://doi.org/10.1016/j.jgeb.2017.06.005 DOI: https://doi.org/10.1016/j.jgeb.2017.06.005
Perry, J. J., & Staley, J. T. (1997). Taxonomy of eubacteria and archaea. Microbiology: Diversity and Dynamics, 388-413.
Pingali, P. L. (2012). Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109(31), 12302–12308. https://doi.org/10.1073/pnas.0912953109 DOI: https://doi.org/10.1073/pnas.0912953109
Rajput, V. D., Mi̇Nki̇Na, T., Kumari̇, A., Shende, S. S., Ranjan, A., et al. (2022). A review on nanobioremediation approaches for restoration of contaminated soil. Eurasian Journal of Soil Science,11(1), 43–60. https://doi.org/10.18393/ejss.990605 DOI: https://doi.org/10.18393/ejss.990605
Ranjan, A., Rajput, V. D., Prazdnova, E. V., Gurnani, M., Bhardwaj, P., et al. (2023). Nature's antimicrobial arsenal: Non-ribosomal peptides from pgpb for plant pathogen biocontrol. Fermentation, 9(7), 597. https://doi.org/10.3390/fermentation9070597 DOI: https://doi.org/10.3390/fermentation9070597
Rekha, K., Ramasamy, M., & Usha, B. (2020). Root exudation of organic acids as affected by plant growth-promoting rhizobacteria Bacillus subtilis RR4 in rice. Journal of Crop Improvement, 34(4), 571–586. https://doi.org/10.1080/15427528.2020.1746719 DOI: https://doi.org/10.1080/15427528.2020.1746719
Richer, A. C., & Holben, F. J. (1950). Preliminary report of the yeast fermentative procedure for the estimation of available soil nitrogen and general fertility level. Soil Science Society of America Journal, 14(C), 223–225. https://doi.org/10.2136/ sssaj1950.036159950014000C0051x DOI: https://doi.org/10.2136/sssaj1950.036159950014000C0051x
Sapkota, A., Thapa, A., Budhathoki, A., Sainju, M., Shrestha, P., & Aryal, S. (2020). Isolation, characterization, and screening of antimicrobial-producing actinomycetes from soil samples. International Journal of Microbiology, 2020, 1–7. https://doi.org/10.1155/2020/2716584 DOI: https://doi.org/10.1155/2020/2716584
Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9 DOI: https://doi.org/10.1016/0003-2697(87)90612-9
Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364. https://doi.org/10.5958/2455-7145.2018.00056.5 DOI: https://doi.org/10.5958/2455-7145.2018.00056.5
Sharma, R., Singh, N. S., & Singh, D. K. (2019). Soil microbial diversity of peri-urban agricultural field and riverbank along Yamuna river in Delhi, India. SN Applied Sciences, 1(1), 22. https://doi.org/10.1007/s42452-018-0024-9 DOI: https://doi.org/10.1007/s42452-018-0024-9
Singh, B., & Ryan, J. (2015). Managing fertilizers to enhance soil health. International Fertilizer Industry Association, Paris, France, 1.
Souza, A. N. D., & Martins, M. L. L. (2001). Isolation, properties and kinetics of growth of a thermophilic Bacillus. Brazilian Journal of Microbiology, 32, 271-275. DOI: https://doi.org/10.1590/S1517-83822001000400003
Stegelmeier, A. A., Rose, D. M., Joris, B. R., & Glick, B. R. (2022). The use of pgpb to promote plant hydroponic growth. Plants, 11(20), 2783. https://doi.org/10.3390/plants11202783 DOI: https://doi.org/10.3390/plants11202783
Tizazu, S., Tesfaye, G., Andualem, B., Wang, A., & Guadie, A. (2022). Evaluating the potential of thermo-alkaliphilic microbial
consortia for azo dye biodegradation under anaerobic-aerobic conditions: Optimization and microbial diversity analysis. Journal of Environmental Management, 323, 116235. https://doi.org/10.1016/j.jenvman.2022.116235 DOI: https://doi.org/10.1016/j.jenvman.2022.116235
Touliatos, D., Dodd, I. C., & McAinsh, M. (2016). Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food and Energy Security, 5(3), 184–191. https://doi.org/10.1002/fes3.83 DOI: https://doi.org/10.1002/fes3.83
Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiology, 132(1), 44–51. https://doi.org/10.1104/pp.102.019661 DOI: https://doi.org/10.1104/pp.102.019661
Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method: Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003 DOI: https://doi.org/10.1097/00010694-193401000-00003
Wang, G., Zhang, L., Zhang, S., Li, B., Li, J., et al. (2023). The combined use of a plant growth promoting Bacillus sp. Strain and GABA promotes the growth of rice under salt stress by regulating antioxidant enzyme system, enhancing photosynthesis and improving soil enzyme activities. Microbiological Research, 266, 127225. https://doi.org/10.1016/j.micres.2022.127225 DOI: https://doi.org/10.1016/j.micres.2022.127225
Wood, N. T. (2001). Nodulation by numbers: The role of ethylene in symbiotic nitrogen fixation. Trends in Plant Science, 6(11), 501–502. https://doi.org/10.1016/S1360-1385(01)02128-8 DOI: https://doi.org/10.1016/S1360-1385(01)02128-8
Xiao, L., Zhang, W., Hu, P., Xiao, D., Yang, R., Ye, Y., & Wang, K. (2021). The formation of large macroaggregates induces soil organic carbon sequestration in short-term cropland restoration in a typical karst area. Science of The Total Environment, 801, 149588. https://doi.org/10.1016/j.scitotenv.2021.149588 DOI: https://doi.org/10.1016/j.scitotenv.2021.149588
Yu, Y., Gui, Y., Li, Z., Jiang, C., Guo, J., & Niu, D. (2022). Induced systemic resistance for improving plant immunity by beneficial microbes. Plants, 11(3), 386. https://doi.org/10.3390/ plants11030386 DOI: https://doi.org/10.3390/plants11030386
Zeifman, L., Hertog, S., Kantorova, V., & Wilmoth, J. (2022). A world of 8 billion. United Nations Department of Economic and Social Affairs. Retrieved from https://www.un.org/development/ desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd_2022_pb_140.pdf.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.