Cytotoxic Study of Zinc Oxide Nanoparticles on Cervical Cancer Cell Line
DOI:
https://doi.org/10.18006/2023.11(5).815.821Keywords:
Zinc oxide nanoparticles, Chemical synthesis, HeLa cell, FESEM, EDX, MTT assayAbstract
The advancement of nanomedicine drugs as an outcome of nanotechnology offers tremendous potential to enhance cancer-fighting tactics. Scientists have begun studying the role of NPs in immunotherapy, an area that is particularly beneficial in treating malignancies. Conventional treatment of cancer uses medications known as chemotherapy that frequently cause adverse effects on healthy tissues. Zinc is a vital micronutrient for the well-being of humans; therefore, nanomaterials such as zinc oxide nanoparticles (ZnO NPs) are progressively appealing as cutting-edge medical agents with implementations like anticancer properties. A bottom-up approach was utilized to chemically produce the ZnO NPs, which were characterized using Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-ray analysis (EDX). MTT assays have been carried out to study the cell viability percentage against multiple ZnO NPs concentrations and durations. The white ZnO NPs displayed a diverse morphology within the nanoscale range, featuring rod and spherical shapes. This synthesis was confirmed through EDX, which revealed distinct peaks corresponding to zinc and oxygen, affirming the formation of pure ZnO NPs. MTT assay data showed that ZnO NPs had a dose and time-dependent cytotoxicity against HeLa cells. This observation suggests that the ZnO NPs possess the potential to combat cancer and may hold promise for applications in biomedical research, particularly in the development of anticancer drugs.
References
Ahmadpour Kermani, S., Salari, S., & Ghasemi Nejad Almani, P. (2021). Comparison of antifungal and cytotoxicity activities of titanium dioxide and zinc oxide nanoparticles with amphotericin B against different Candida species: In vitro evaluation. Journal of clinical laboratory analysis, 35(1), e23577. https://doi.org/ 10.1002/jcla.23577 DOI: https://doi.org/10.1002/jcla.23577
Ali, A., Phull, A.R., & Zia, M. (2018). Elemental zinc to zinc nanoparticles: Is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. Nanotechnology Reviews, 7(5), 413–441. https://doi.org/10.1515/ntrev-2018-0067 DOI: https://doi.org/10.1515/ntrev-2018-0067
Amjad, M. T., Chidharla, A., & Kasi, A. (2022). Cancer Chemotherapy. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK564367/
Anand, P., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., Sung, B., & Aggarwal, B. B. (2008). Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharmaceutical Research, 25(9), 2097–2116. https://doi.org/10.1007/s11095-008-9661-9 DOI: https://doi.org/10.1007/s11095-008-9661-9
Biron, D., Santos, V., & Bergmann, C. (2020). Synthesis and Characterization of Zinc Oxide Obtained by Combining Zinc Nitrate with Sodium Hydroxide in Polyol Medium. Materials Research, 23, e20200080. https://doi.org/10.1590/1980-5373-mr-2020-0080 DOI: https://doi.org/10.1590/1980-5373-mr-2020-0080
Dobrucka, R., Dlugaszewska, J., & Kaczmarek, M. (2017). Cytotoxic and antimicrobial effects of biosynthesized ZnO nanoparticles using of Chelidonium majus extract. Biomedical Microdevices, 20(1), 5. https://doi.org/10.1007/s10544-017-0233-9 DOI: https://doi.org/10.1007/s10544-017-0233-9
Gavas, S., Quazi, S., & Karpiński, T. M. (2021). Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Research Letters, 16, 173. https://doi.org/10.1186/s11671-021-03628-6 DOI: https://doi.org/10.1186/s11671-021-03628-6
Hassan, H. F. H., Mansour, A. M., Abo-Youssef, A. M. H., Elsadek, B. E. M., & Messiha, B. A. S. (2017). Zinc oxide nanoparticles as a novel anticancer approach; in vitro and in vivo evidence. Clinical and Experimental Pharmacology & Physiology, 44(2), 235–243. https://doi.org/10.1111/1440-1681.12681 DOI: https://doi.org/10.1111/1440-1681.12681
Khashan, K. S., Sulaiman, G. M., Hussain, S. A., Marzoog, T. R., & Jabir, M. S. (2020). Synthesis, Characterization and Evaluation of Antibacterial, Anti-parasitic and Anticancer Activities of Aluminum-Doped Zinc Oxide Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 30(9), 3677–3693. https://doi.org/10.1007/s10904-020-01522-9 DOI: https://doi.org/10.1007/s10904-020-01522-9
Kumar, R., Sahoo, G., Pandey, K., Nayak, M. K., Topno, R., Rabidas, V., & Das, P. (2018). Virostatic potential of zinc oxide (ZnO) nanoparticles on capsid protein of cytoplasmic side of chikungunya virus. International Journal of Infectious Diseases, 73, 368. https://doi.org/10.1016/j.ijid.2018.04.4247 DOI: https://doi.org/10.1016/j.ijid.2018.04.4247
Luis, C., Castaño-Guerrero, Y., Soares, R., Sales, G., & Fernandes, R. (2019). Avoiding the Interference of Doxorubicin with MTT Measurements on the MCF-7 Breast Cancer Cell Line. Methods and Protocols, 2(2), Article 2. https://doi.org/10.3390/mps2020029 DOI: https://doi.org/10.3390/mps2020029
Maheswaran, H., Wong, L. S., Dhanapal, A. C. T. A., Narendhirakannan, R. T., Janakiraman, A. K., & Djearamane, S. (2021). Toxicity of Zinc Oxide Nanoparticles on Human Skin Dermal Cells. Journal of Experimental Biology and Agricultural Sciences, 9(Spl-1-GCSGD_2020), S95-S100. https://doi.org/ 10.18006/2021.9(Spl-1-GCSGD_2020).S95.S100. DOI: https://doi.org/10.18006/2021.9(Spl-1-GCSGD_2020).S95.S100
Mandal, A. K., Katuwal, S., Tettey, F., Gupta, A., Bhattarai, S., et al. (2022). Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications. Nanomaterials, 12(17), Article 17. https://doi.org/10.3390/ nano12173066 DOI: https://doi.org/10.3390/nano12173066
Metwally, A. A., Abdel-Hady, A.N. A. A., Haridy, M. A. M., Ebnalwaled, K., Saied, A. A., & Soliman, A. S. (2022). Wound healing properties of green (using Lawsonia inermis leaf extract) and chemically synthesized ZnO nanoparticles in albino rats. Environmental Science and Pollution Research, 29(16), 23975–23987. https://doi.org/10.1007/s11356-021-17670-5 DOI: https://doi.org/10.1007/s11356-021-17670-5
Moore, J. A., & Chow, J. C. L. (2021). Recent progress and applications of gold nanotechnology in medical biophysics using artificial intelligence and mathematical modeling. Nano Express, 2(2), 022001. https://doi.org/10.1088/2632-959X/abddd3 DOI: https://doi.org/10.1088/2632-959X/abddd3
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4 DOI: https://doi.org/10.1016/0022-1759(83)90303-4
Motazedi, R., Rahaiee, S., & Zare, M. (2020). Efficient biogenesis of ZnO nanoparticles using extracellular extract of Saccharomyces cerevisiae: Evaluation of photocatalytic, cytotoxic and other biological activities. Bioorganic Chemistry, 101, 103998. https://doi.org/10.1016/j.bioorg.2020.103998 DOI: https://doi.org/10.1016/j.bioorg.2020.103998
Namasivayam, S. K. R., Shyamsundar, D., Prabanch, M. M., Bharani, R. A., & Avinash, G. P. (2020). Inhibitory potential of molecular mechanism of pathogenesis with special reference to biofilm inhibition by chemogenic zinc oxide nanoparticles. Letters of Applied NanoBioScience, 10, 1862–1870. DOI: https://doi.org/10.33263/LIANBS101.18621870
Norouzi Jobie, F., Ranjbar, M., Hajizadeh Moghaddam, A., & Kiani, M. (2021). Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. Advanced Powder Technology, 32(6), 2043–2052. https://doi.org/10.1016/j.apt.2021.04.014 DOI: https://doi.org/10.1016/j.apt.2021.04.014
Pintor, A. V. B., Queiroz, L. D., Barcelos, R., Primo, L. S. G., Maia, L. C., & Alves, G. G. (2020). MTT versus other cell viability assays to evaluate the biocompatibility of root canal filling materials: A systematic review. International Endodontic Journal, 53(10), 1348–1373. https://doi.org/10.1111/iej.13353 DOI: https://doi.org/10.1111/iej.13353
Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T., & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91–95. https://doi.org/10.1016/j.enzmictec.2018.06.009 DOI: https://doi.org/10.1016/j.enzmictec.2018.06.009
Sahu, T., Ratre, Y. K., Chauhan, S., Bhaskar, L. V. K. S., Nair, M. P., & Verma, H. K. (2021). Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology, 63, 102487. https://doi.org/10.1016/j.jddst.2021.102487 DOI: https://doi.org/10.1016/j.jddst.2021.102487
Shaba, E. Y., Jacob, J. O., Tijani, J. O., & Suleiman, M. A. T. (2021). A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Applied Water Science, 11(2), 48. https://doi.org/10.1007/s13201-021-01370-z DOI: https://doi.org/10.1007/s13201-021-01370-z
Sim, S., & Wong, N. K. (2021). Nanotechnology and its use in imaging and drug delivery (Review). Biomedical Reports, 14(5), 1–9. https://doi.org/10.3892/br.2021.1418 DOI: https://doi.org/10.3892/br.2021.1418
Singh, Th. A., Sharma, A., Tejwan, N., Ghosh, N., Das, J., & Sil, P. C. (2021). A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Advances in Colloid and Interface Science, 295, 102495. https://doi.org/10.1016/ j.cis.2021.102495 DOI: https://doi.org/10.1016/j.cis.2021.102495
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., et al. (2015). Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters, 7(3), 219–242. https://doi.org/10.1007/s40820-015-0040-x DOI: https://doi.org/10.1007/s40820-015-0040-x
Sztandera, K., Gorzkiewicz, M., & Klajnert-Maculewicz, B. (2019). Gold Nanoparticles in Cancer Treatment. Molecular Pharmaceutics, 16(1), 1–23. https://doi.org/10.1021/ acs.molpharmaceut.8b00810 DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00810
Taheraslani, M., & Gardeniers, H. (2019). High-Resolution SEM and EDX Characterization of Deposits Formed by CH4+Ar DBD Plasma Processing in a Packed Bed Reactor. Nanomaterials, 9(4), 589. https://doi.org/10.3390/nano9040589 DOI: https://doi.org/10.3390/nano9040589
Wang, H., Wingett, D., Engelhard, M. H., Feris, K., Reddy, K. M., et al. (2009). Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications. Journal of Materials Science: Materials in Medicine, 20(1), 11–22. https://doi.org/10.1007/s10856-008-3541-z DOI: https://doi.org/10.1007/s10856-008-3541-z
Zhao, C., Zhang, X., & Zheng, Y. (2018). Biosynthesis of polyphenols functionalized ZnO nanoparticles: Characterization and their effect on human pancreatic cancer cell line. Journal of Photochemistry and Photobiology B: Biology, 183, 142–146. https://doi.org/10.1016/j.jphotobiol.2018.04.031 DOI: https://doi.org/10.1016/j.jphotobiol.2018.04.031
Downloads
Published
How to Cite
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.