Identification and antibiotic susceptibility profiles of anaerobic bacteria isolated from patients with acne vulgaris

Authors

  • Salma Walid INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
  • Geetha Subramaniam INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
  • Lalita Ambigai Sivasamugham INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
  • Wong Ling Shing INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
  • Preamala Gunabalasingam Department of Dermatology, Hospital Tuanku Jaafar Seremban, Ministry of Health Malaysia
  • Nurfara Ain Binti Ramli Department of Dermatology, Hospital Tuanku Jaafar Seremban, Ministry of Health Malaysia
  • Nithiya Visayaragawan Department of Dermatology, Hospital Tuanku Jaafar Seremban, Ministry of Health Malaysia
  • Gan Li Lian Clinical Research Center, Hospital Tuanku Jaafar Seremban, Ministry of Health Malaysia
  • Anshoo Agarwal Department of Pathology, Northern Border University, 9280 Arar, Saudi Arabia

DOI:

https://doi.org/10.18006/2023.11(5).809.814

Keywords:

Acne vulgaris, Antibiotic susceptibility profiles, Anaerobic bacterial isolates, Human Health

Abstract

Commensal bacteria like the Staphylococcal species are part of the skin microbiota, which helps maintain healthy skin. However, certain factors can lead to these commensals becoming opportunistic pathogens capable of causing diseases like acne vulgaris. Topical and systemic antibiotics have been the main treatment for acne. However, long-term antibiotic usage could result in the emergence of resistant bacterial strains and treatment failure. This study evaluated the antibiotic susceptibility patterns of anaerobic bacteria isolated from clinical acne samples. Skin swabs were collected from 50 acne patients and cultured under anaerobic conditions. The resulting bacterial isolates were identified using biochemical tests and 16S rRNA gene sequencing. The antibiotic susceptibility patterns of the confirmed isolates were determined using the disc diffusion assay for eight commonly prescribed antibiotics for acne treatment. Sequencing results revealed that S. epidermidis was the most isolated bacterial species (68%, n=34), followed by S. aureus (8%, n=4). However, a significant proportion of bacterial isolates were susceptible to all eight tested antibiotics, which is unusual. On the other hand, 26% (n=13) of the tested bacterial species isolates were found to be resistant to clindamycin, while 36% (18) were resistant to erythromycin and 20% (n=10) were to tetracycline. Since there has been limited research regarding the antibiotic resistance patterns of anaerobic acne-associated bacteria in Malaysia, this study can help shed some light on suitable local prescription practices and raise awareness about the cautious use of antibiotics in treating acne vulgaris.

References

Alkhawaja, E., Hammadi, S., Abdelmalek, M., Mahasneh, N., Alkhawaja, B., & Abdelmalek, S. M. (2020). Antibiotic resistant Cutibacterium acnes among acne patients in Jordan: a cross sectional study. BMC Dermatology, 20(1), 17. doi: 10.1186/s12895-020-00108-9. DOI: https://doi.org/10.1186/s12895-020-00108-9

Alnabati, N. A., Al-Hejin, A. M., Noor, S. O., Ahmed, M. M., Abu-Zeid, M., & Mleeh, N.T. (2021). The antibacterial activity of four Saudi medicinal plants against clinical isolates of Propionibacterium acnes. Biotechnology and Biotechnological Equipment, 35(1), 415–424. https://doi.org/10.1080/ 13102818.2021.1885992 DOI: https://doi.org/10.1080/13102818.2021.1885992

Claudel, J. P., Auffret, N., Leccia, M. T., Poli, F., Corvec, S., & Dréno, B. (2019). Staphylococcus epidermidis: A potential new player in the physiopathology of acne? Dermatology, 235(4), 287–294. https://doi.org/10.1159/000499858 DOI: https://doi.org/10.1159/000499858

CLSI (2021). Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. Wayne PA: Clinical Laboratory Standards Institute; 2021.

Dimitrakopoulou, M. E., Stavrou, V., Kotsalou, C., & Vantarakis, A. (2020). Boiling extraction method VS commercial Kits for bacterial DNA isolation from food samples. Journal of Food Science and Nutrition Research, 3, 311-319. DOI: https://doi.org/10.26502/jfsnr.2642-11000057

Gamil, H. D., Mustafa, S. A. G., Amer, R. M. M., & Khashaba, S. A. E. (2023). Implications of antimicrobial resistance during acne treatment: review article. The Egyptian Journal of Hospital Medicine, 9, 821-823. DOI: https://doi.org/10.21608/ejhm.2023.279944

Legiawati, L., Halim, P. A., Fitriani, M., Hikmahrachim, H. G., & Lim, H. W. (2023) Microbiomes in Acne Vulgaris and Their Susceptibility to Antibiotics in Indonesia: A Systematic Review and Meta-Analysis. Antibiotics, 12(1),145. https://doi.org/10.3390/ antibiotics12010145 DOI: https://doi.org/10.3390/antibiotics12010145

Mawardi, P., Ardiani, I., Primisawitri, P. P., & Nareswari, A. (2021). Dual role of Cutibacterium acnes in acne vulgaris pathophysiology. Bali Medical Journal, 10(2), 486. https://doi.org/10.15562/bmj.v10i2.2358. DOI: https://doi.org/10.15562/bmj.v10i2.2358

Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Microbiology Spectrum, 4(2). https://doi.org/10.1128/microbiolspec.vmbf-0016-2015 DOI: https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

Pauzenberger, L., Heller, V., Ostermann, R.C., Laky, B., Heuberer, P. R. & Anderl, R (2019). Cutibacterium acnes (formerly Propionibacterium acnes) contamination of the surgical field during shoulder arthroscopy. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 35 (6), 1750–1757. https://doi.org/10.1016/j.arthro.2019.01.024. DOI: https://doi.org/10.1016/j.arthro.2019.01.024

Ruchiatan, K., Rizqandaru, T., Satjamanggala, P. R., Tache, N., Cahyadi, A. I., et al. (2023). Characteristics of Biofilm-Forming Ability and Antibiotic Resistance of Cutibacterium acnes and Staphylococcus epidermidis from Acne vulgaris Patients. Clinical Cosmetic Investigational Dermatology, 16, 2457-2465. https://doi.org/10.2147/CCID.S422486 DOI: https://doi.org/10.2147/CCID.S422486

Sardana, K., Gupta, T., Kumar, B., Gautam, H. K., & Garg, V. K. (2016). A cross-sectional pilot study of antibiotic resistance in Propionibacterium acnes strains in Indian acne patients using 16S-RNA polymerase chain reaction: A comparison among treatment modalities including antibiotics, benzoyl peroxide, and isotretinoin. Indian Journal of Dermatology, 61(1), 45. https://doi.org/10.4103/0019-5154.174025 DOI: https://doi.org/10.4103/0019-5154.174025

Shoaib, M., Muzammil, I., Hammad, M., Bhutta, Z., & Yaseen, I. A. (2020). Mini-Review on commonly used biochemical tests for identification of bacteria. International Journal of Research Publications, 54 (1). 10.47119/IJRP100541620201224. DOI: https://doi.org/10.47119/IJRP100541620201224

Sitohang, I.B.S., Fathan, H., Effendi, E., & Wahid, M. (2019). The susceptibility of pathogens associated with acne vulgaris to antibiotics. Medical Journal of Indonesia, 28, 21–27. https://doi.org/10.13181/mji.v28i1.2735. DOI: https://doi.org/10.13181/mji.v28i1.2735

Sowmiya, M., Malathi, J., Swarnali, S., Priya, J. P., Therese, K. L., & Madhavan, H. N. (2015). A study on the characterization of

Propionibacterium acnes isolated from ocular clinical specimens. The Indian Journal of Medical Research, 142 (4), 438. https://doi.org/10.4103/0971-5916.169209 DOI: https://doi.org/10.4103/0971-5916.169209

Sun, K.L., & Chang, J. M. (2017). Special types of folliculitis which should be differentiated from acne. Dermato-Endocrinology, 9(1), e1356519. https://doi.org/10.1080/ 19381980.2017.1356519 DOI: https://doi.org/10.1080/19381980.2017.1356519

Sutcliffe, J., McLaughlin, R., Webster, G., Read, A. F., Drlica, C., Elliott, R., & Stuart, I. (2020). Susceptibility of Cutibacterium acnes to topical minocycline foam. Anaerobe, 62, 02169. https://doi.org/10.1016/j.anaerobe.2020.102169. DOI: https://doi.org/10.1016/j.anaerobe.2020.102169

Tabri, F. (2018). The association between Staphylococcus epidermidis and palmitic acid level in patients with acne vulgaris. Surgical and Cosmetic Dermatology, 10(3). https://doi.org/10.5935/scd1984-8773.20191121382 DOI: https://doi.org/10.5935/scd1984-8773.20191121382

Tan, A.U., Schlosser, B. J., & Paller, A. S. (2017). A review of diagnosis and treatment of acne in adult female patients. International Journal of Women's Dermatology, 4(2), 56-71. doi: 10.1016/j.ijwd.2017.10.006. DOI: https://doi.org/10.1016/j.ijwd.2017.10.006

Totté, J. E., van der Feltz, W. T., Bode, L. G., van Belkum, A., van Zuuren, E. J., & Pasmans, S. G. (2016). A systematic review and meta-analysis on Staphylococcus aureus carriage in psoriasis, acne and rosacea. European Journal of Clinical Microbiology & Infectious Diseases, 35 (7), 1069–1077. https://doi.org/10.1007/ s10096-016-2647-3 DOI: https://doi.org/10.1007/s10096-016-2647-3

Walsh, T. R., Efthimiou, J., & Dréno, B. (2016). Systematic review of antibiotic resistance in acne: An increasing topical and oral threat. The Lancet Infectious Diseases, 16(3). https://doi.org/10.1016/s1473-3099(15)00527-7. DOI: https://doi.org/10.1016/S1473-3099(15)00527-7

Yang, Z., Zhang, Y., Lazic Mosler, E., et al. (2020). Topical benzoyl peroxide for acne. Cochrane Database of Systematic Reviews, 2020(3), CD011154. https://doi.org/10.1002/ 14651858.cd011154.pub2 DOI: https://doi.org/10.1002/14651858.CD011154.pub2

Downloads

Published

2023-11-30

How to Cite

Walid, S., Subramaniam, G., Sivasamugham, L. A., Shing, W. L., Gunabalasingam, P., Ramli, N. A. B., Visayaragawan, N., Lian, G. L., & Agarwal, A. (2023). Identification and antibiotic susceptibility profiles of anaerobic bacteria isolated from patients with acne vulgaris. Journal of Experimental Biology and Agricultural Sciences, 11(5), 809–814. https://doi.org/10.18006/2023.11(5).809.814

Issue

Section

RESEARCH ARTICLES

Categories