Structure and Reactivity of Halogenated GC PNA Base Pairs – A DFT Approach
DOI:
https://doi.org/10.18006/2023.11(5).800.808Keywords:
PNA, Halogen, DFT, Reactivity, StabilityAbstract
The present study explored the structural and reactivity relationship of halogenated G-C PNA base pairs using density functional theory (DFT) calculations. The halogens such as F, Cl, and Br are substituted by replacing H atoms involved in H-bonds of the base pairs. All structures were optimized using the B3LYP/6-311++G** theory level, and positive frequencies confirmed their equilibrium states. To understand the structural variations of the considered halogenated systems, the bond distances of R─X, R─H, and X/H•••Y and the bond angles of R─X•••Y were analyzed. The obtained structural parameters and interaction energies are comparable with the previous theoretical reports. In addition, the interaction energies (Eint) and quantum molecular descriptors (QMD) are also calculated to understand the difference between halogenated PNA systems and their non-halogenated counterparts. In this study, the enhancement in the reactivity properties of halogenated PNA systems has been demonstrated, which indicates their improved responsive characteristics in various chemical reactions. Based on the available results, the halogenated PNA systems, carefully considering their substitutional position, facilitate better accommodation for the triplex formation of dsDNA/dsRNA. Therefore, it is concluded that the improved reactivity properties of halogenated PNA base pairs would make them potential candidates for various biological applications.
References
Álvarez-Martínez, F. J., Barrajón-Catalán, E., & Micol, V. (2020). Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines, 8(10), 405. DOI: 10.3390/biomedicines8100405 DOI: https://doi.org/10.3390/biomedicines8100405
Auffinger, P., Hays, F. A., Westhof, E., & Ho, P. S. (2004). Halogen bonds in biological molecules. Proceedings of the National Academy of Sciences of the United States of America, 101(48), 16789–16794. https://doi.org/10.1073/pnas.0407607101 DOI: https://doi.org/10.1073/pnas.0407607101
Benedetto Tiz, D., Bagnoli, L., Rosati, O., Marini, F., Sancineto, L., & Santi, C. (2022). New Halogen-Containing Drugs Approved by FDA in 2021: An Overview on Their Syntheses and Pharmaceutical Use. Molecules, 27(5), 1643. DOI: 10.3390/molecules27051643 DOI: https://doi.org/10.3390/molecules27051643
Boys, S.F., & Bernardi, F. (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19 (4), 553-566, DOI: 10.1080/00268977000101561 DOI: https://doi.org/10.1080/00268977000101561
Chattaraj, P. K., Sarkar, U., & Roy, D. R. (2006). Electrophilicity Index. Chemical Reviews, 106(6), 2065-2091. DOI: 10.1021/cr040109f DOI: https://doi.org/10.1021/cr040109f
Danelius, E., Andersson, H., Jarvoll, P., Lood, K., Gräfenstein, J., & Erdélyi, M. (2017). Halogen Bonding: A Powerful Tool for Modulation of Peptide Conformation. Biochemistry, 56(25), 3265-3272. DOI: 10.1021/acs.biochem.7b00429 DOI: https://doi.org/10.1021/acs.biochem.7b00429
Demidov, V. V., Potaman, V. N., Frank-Kamenetskil, M. D., Egholm, M., Buchard, O., Sönnichsen, S. H., & Nlelsen, P. E. (1994). Stability of peptide nucleic acids in human serum and cellular extracts. Biochemical Pharmacology, 48(6), 1310-1313. https://doi.org/10.1016/0006-2952(94)90171-6 DOI: https://doi.org/10.1016/0006-2952(94)90171-6
Dennington, R., Keith, T., & Millam, J. (2009). GaussView, Version 5.0.8.: Semichem Inc., Shawnee Mission KS
Fonseca Guerra, C., Bickelhaupt, F. M., Snijders, J. G., & Baerends, E. J. (2000). Hydrogen Bonding in DNA Base Pairs: Reconciliation of Theory and Experiment. Journal of the American Chemical Society, 122(17), 4117-4128. DOI: 10.1021/ja993262d DOI: https://doi.org/10.1021/ja993262d
Gaussian 09, Revision A. (2016). Gaussian, Inc., Wallingford, CT
Gomila, R. M., Frontera, A., & Bauzá, A. (2023). A Comprehensive Ab Initio Study of Halogenated A•••U and G•••C Base Pair Geometries and Energies. International Journal of Molecular Sciences, 24(6), 5530. DOI: 10.3390/ijms24065530 DOI: https://doi.org/10.3390/ijms24065530
Indumathi, K., Abiram, A., & Praveena, G. (2020). Effect of peptidic backbone on the nucleic acid dimeric strands. Molecular Physics, 118(1), e1584682. DOI: 10.1080/00268976.2019.1584682 DOI: https://doi.org/10.1080/00268976.2019.1584682
Inoue, M., Sumii, Y., & Shibata, N. (2020). Contribution of Organofluorine Compounds to Pharmaceuticals. ACS Omega, 5(19), 10633-10640. DOI: 10.1021/acsomega.0c00830 DOI: https://doi.org/10.1021/acsomega.0c00830
Jerbi, J., & Springborg, M. (2018). Reactivity descriptors for DNA bases and the methylation of cytosine. International Journal of Quantum Chemistry, 118(11), e25538. https://doi.org/10.1002/ qua.25538 DOI: https://doi.org/10.1002/qua.25538
Kolář, M. H., & Tabarrini, O. (2017). Halogen Bonding in Nucleic Acid Complexes. Journal of Medicinal Chemistry, 60(21), 8681-8690. DOI: 10.1021/acs.jmedchem.7b00329 DOI: https://doi.org/10.1021/acs.jmedchem.7b00329
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B Condensed Matter, 37(2), 785-789. 10.1103/physrevb.37.785 DOI: https://doi.org/10.1103/PhysRevB.37.785
Metrangolo, P., & Resnati, G. (2008). Chemistry. Halogen versus hydrogen. Science, 321(5891), 918-919. DOI: 10.1126/science.1162215 DOI: https://doi.org/10.1126/science.1162215
Nielsen, P., Egholm, M., Berg, R., & Buchardt, O. (1992). Sequence-Selective Recognition of DNA by Strand Displacement with a Thymine-Substituted Polyamide. Science (New York, N.Y.), 254, 1497-1500. DOI: 10.1126/science.1962210 DOI: https://doi.org/10.1126/science.1962210
Ochoa, S., & Milam, V. T. (2020). Modified Nucleic Acids: Expanding the Capabilities of Functional Oligonucleotides. Molecules (Basel, Switzerland), 25(20), 4659. https://doi.org/10.3390/molecules25204659 DOI: https://doi.org/10.3390/molecules25204659
Padmanabhan, J., Parthasarathi, R., Elango, M., Subramanian, V., Krishnamoorthy, B. S., et al. (2007). Multiphilic Descriptor for
Chemical Reactivity and Selectivity. The Journal of Physical Chemistry A, 111(37), 9130-9138. DOI: 10.1021/jp0718909 DOI: https://doi.org/10.1021/jp0718909
Parker, A. J., Stewart, J., Donald, K. J., & Parish, C. A. (2012). Halogen Bonding in DNA Base Pairs. Journal of the American Chemical Society, 134(11), 5165-5172. DOI: 10.1021/ja2105027 DOI: https://doi.org/10.1021/ja2105027
Patil, K. M., Toh, D. K., Yuan, Z., Meng, Z., Shu, Z., et al. (2018). Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs. Nucleic Acids Research, 46(15), 7506-7521. DOI: 10.1093/nar/gky631 DOI: https://doi.org/10.1093/nar/gky631
Seidler, M., Li, N. K., Luo, X., Xuan, S., Zuckermann, R. N., et al. (2022). Importance of the Positively Charged σ-Hole in Crystal Engineering of Halogenated Polypeptoids. The Journal of Physical Chemistry B, 126(22), 4152-4159. DOI: 10.1021/acs.jpcb.2c01843 DOI: https://doi.org/10.1021/acs.jpcb.2c01843
Shields, Z. P., Murray, J. S., & Politzer, P. (2010). Directional tendencies of halogen and hydrogen bonds. International Journal of Quantum Chemistry, 110(15), 2823-2832. https://doi.org/10.1002/qua.22787 DOI: https://doi.org/10.1002/qua.22787
Smirnov, A. S., Mikherdov, A. S., Rozhkov, A. V., Gomila, R. M., Frontera, A., Kukushkin, V. Y., & Bokach, N. A. (2023). Halogen Bond-Involving Supramolecular Assembly Utilizing Carbon as a Nucleophilic Partner of I⋅⋅⋅C Non-Covalent Interaction. Chemistry – An Asian Journal, 18(7), e202300037. https://doi.org/10.1002/asia.202300037 DOI: https://doi.org/10.1002/asia.202300037
Uppuladinne, M. V. N., Jani, V., Sonavane, U. B., & Joshi, R. R. (2013). Quantum chemical studies of novel 2′-4′ conformationally restricted antisense monomers. International Journal of Quantum Chemistry, 113(23), 2523-2533. https://doi.org/10.1002/qua.24492 DOI: https://doi.org/10.1002/qua.24492
Wang, C.R., & Lu, Q.B. (2010). Molecular Mechanism of the DNA Sequence Selectivity of 5-Halo-2′-Deoxyuridines as Potential Radiosensitizers. Journal of the American Chemical Society, 132(42), 14710-14713. DOI: 10.1021/ja102883a DOI: https://doi.org/10.1021/ja102883a
Yu, Y., Liu, A., Dhawan, G., Mei, H., Zhang, W., Izawa, K., Soloshonok, V. A., & Han, J. (2021). Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chinese Chemical Letters, 32(11), 3342-3354. https://doi.org/10.1016/j.cclet.2021.05.042 DOI: https://doi.org/10.1016/j.cclet.2021.05.042
Zdrowowicz, M., Wityk, P., Michalska, B., & Rak, J. (2016). 5-Bromo-2’-deoxycytidine — a Potential DNA Photosensitizer. Organic and Biomolecular Chemistry, 14, 9312-9321. DOI: 10.1039/C6OB01446A DOI: https://doi.org/10.1039/C6OB01446A
Downloads
Published
How to Cite
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.