Structure and Reactivity of Halogenated GC PNA Base Pairs – A DFT Approach

Authors

  • Ranjithkumar Rajamani Viyen Biotech LLP, Coimbatore, Tamil Nadu 641031, India
  • Indumathi K Department of Physics, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, 641004, India
  • Srimathi P Department of Physics, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, 641004, India
  • Praveena G Department of Physics, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, 641004, India
  • Ling Shing Wong Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
  • Sinouvassane Djearamane Department of Biomedical Science, Faculty of Science, UniversitiTunku Abdul Rahman, Kampar 31900, Perak, Malaysia

DOI:

https://doi.org/10.18006/2023.11(5).800.808

Keywords:

PNA, Halogen, DFT, Reactivity, Stability

Abstract

The present study explored the structural and reactivity relationship of halogenated G-C PNA base pairs using density functional theory (DFT) calculations. The halogens such as F, Cl, and Br are substituted by replacing H atoms involved in H-bonds of the base pairs. All structures were optimized using the B3LYP/6-311++G** theory level, and positive frequencies confirmed their equilibrium states. To understand the structural variations of the considered halogenated systems, the bond distances of R─X, R─H, and X/H•••Y and the bond angles of R─X•••Y were analyzed. The obtained structural parameters and interaction energies are comparable with the previous theoretical reports. In addition, the interaction energies (Eint) and quantum molecular descriptors (QMD) are also calculated to understand the difference between halogenated PNA systems and their non-halogenated counterparts. In this study, the enhancement in the reactivity properties  of halogenated PNA systems has been demonstrated, which indicates their improved responsive characteristics in various chemical reactions. Based on the available results, the halogenated PNA systems, carefully considering their substitutional position, facilitate better accommodation for the triplex formation of dsDNA/dsRNA. Therefore, it is concluded that the improved reactivity properties of halogenated PNA base pairs would make them potential candidates for various biological applications.

Author Biography

Sinouvassane Djearamane, Department of Biomedical Science, Faculty of Science, UniversitiTunku Abdul Rahman, Kampar 31900, Perak, Malaysia

Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, India

References

Álvarez-Martínez, F. J., Barrajón-Catalán, E., & Micol, V. (2020). Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines, 8(10), 405. DOI: 10.3390/biomedicines8100405 DOI: https://doi.org/10.3390/biomedicines8100405

Auffinger, P., Hays, F. A., Westhof, E., & Ho, P. S. (2004). Halogen bonds in biological molecules. Proceedings of the National Academy of Sciences of the United States of America, 101(48), 16789–16794. https://doi.org/10.1073/pnas.0407607101 DOI: https://doi.org/10.1073/pnas.0407607101

Benedetto Tiz, D., Bagnoli, L., Rosati, O., Marini, F., Sancineto, L., & Santi, C. (2022). New Halogen-Containing Drugs Approved by FDA in 2021: An Overview on Their Syntheses and Pharmaceutical Use. Molecules, 27(5), 1643. DOI: 10.3390/molecules27051643 DOI: https://doi.org/10.3390/molecules27051643

Boys, S.F., & Bernardi, F. (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19 (4), 553-566, DOI: 10.1080/00268977000101561 DOI: https://doi.org/10.1080/00268977000101561

Chattaraj, P. K., Sarkar, U., & Roy, D. R. (2006). Electrophilicity Index. Chemical Reviews, 106(6), 2065-2091. DOI: 10.1021/cr040109f DOI: https://doi.org/10.1021/cr040109f

Danelius, E., Andersson, H., Jarvoll, P., Lood, K., Gräfenstein, J., & Erdélyi, M. (2017). Halogen Bonding: A Powerful Tool for Modulation of Peptide Conformation. Biochemistry, 56(25), 3265-3272. DOI: 10.1021/acs.biochem.7b00429 DOI: https://doi.org/10.1021/acs.biochem.7b00429

Demidov, V. V., Potaman, V. N., Frank-Kamenetskil, M. D., Egholm, M., Buchard, O., Sönnichsen, S. H., & Nlelsen, P. E. (1994). Stability of peptide nucleic acids in human serum and cellular extracts. Biochemical Pharmacology, 48(6), 1310-1313. https://doi.org/10.1016/0006-2952(94)90171-6 DOI: https://doi.org/10.1016/0006-2952(94)90171-6

Dennington, R., Keith, T., & Millam, J. (2009). GaussView, Version 5.0.8.: Semichem Inc., Shawnee Mission KS

Fonseca Guerra, C., Bickelhaupt, F. M., Snijders, J. G., & Baerends, E. J. (2000). Hydrogen Bonding in DNA Base Pairs: Reconciliation of Theory and Experiment. Journal of the American Chemical Society, 122(17), 4117-4128. DOI: 10.1021/ja993262d DOI: https://doi.org/10.1021/ja993262d

Gaussian 09, Revision A. (2016). Gaussian, Inc., Wallingford, CT

Gomila, R. M., Frontera, A., & Bauzá, A. (2023). A Comprehensive Ab Initio Study of Halogenated A•••U and G•••C Base Pair Geometries and Energies. International Journal of Molecular Sciences, 24(6), 5530. DOI: 10.3390/ijms24065530 DOI: https://doi.org/10.3390/ijms24065530

Indumathi, K., Abiram, A., & Praveena, G. (2020). Effect of peptidic backbone on the nucleic acid dimeric strands. Molecular Physics, 118(1), e1584682. DOI: 10.1080/00268976.2019.1584682 DOI: https://doi.org/10.1080/00268976.2019.1584682

Inoue, M., Sumii, Y., & Shibata, N. (2020). Contribution of Organofluorine Compounds to Pharmaceuticals. ACS Omega, 5(19), 10633-10640. DOI: 10.1021/acsomega.0c00830 DOI: https://doi.org/10.1021/acsomega.0c00830

Jerbi, J., & Springborg, M. (2018). Reactivity descriptors for DNA bases and the methylation of cytosine. International Journal of Quantum Chemistry, 118(11), e25538. https://doi.org/10.1002/ qua.25538 DOI: https://doi.org/10.1002/qua.25538

Kolář, M. H., & Tabarrini, O. (2017). Halogen Bonding in Nucleic Acid Complexes. Journal of Medicinal Chemistry, 60(21), 8681-8690. DOI: 10.1021/acs.jmedchem.7b00329 DOI: https://doi.org/10.1021/acs.jmedchem.7b00329

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B Condensed Matter, 37(2), 785-789. 10.1103/physrevb.37.785 DOI: https://doi.org/10.1103/PhysRevB.37.785

Metrangolo, P., & Resnati, G. (2008). Chemistry. Halogen versus hydrogen. Science, 321(5891), 918-919. DOI: 10.1126/science.1162215 DOI: https://doi.org/10.1126/science.1162215

Nielsen, P., Egholm, M., Berg, R., & Buchardt, O. (1992). Sequence-Selective Recognition of DNA by Strand Displacement with a Thymine-Substituted Polyamide. Science (New York, N.Y.), 254, 1497-1500. DOI: 10.1126/science.1962210 DOI: https://doi.org/10.1126/science.1962210

Ochoa, S., & Milam, V. T. (2020). Modified Nucleic Acids: Expanding the Capabilities of Functional Oligonucleotides. Molecules (Basel, Switzerland), 25(20), 4659. https://doi.org/10.3390/molecules25204659 DOI: https://doi.org/10.3390/molecules25204659

Padmanabhan, J., Parthasarathi, R., Elango, M., Subramanian, V., Krishnamoorthy, B. S., et al. (2007). Multiphilic Descriptor for

Chemical Reactivity and Selectivity. The Journal of Physical Chemistry A, 111(37), 9130-9138. DOI: 10.1021/jp0718909 DOI: https://doi.org/10.1021/jp0718909

Parker, A. J., Stewart, J., Donald, K. J., & Parish, C. A. (2012). Halogen Bonding in DNA Base Pairs. Journal of the American Chemical Society, 134(11), 5165-5172. DOI: 10.1021/ja2105027 DOI: https://doi.org/10.1021/ja2105027

Patil, K. M., Toh, D. K., Yuan, Z., Meng, Z., Shu, Z., et al. (2018). Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs. Nucleic Acids Research, 46(15), 7506-7521. DOI: 10.1093/nar/gky631 DOI: https://doi.org/10.1093/nar/gky631

Seidler, M., Li, N. K., Luo, X., Xuan, S., Zuckermann, R. N., et al. (2022). Importance of the Positively Charged σ-Hole in Crystal Engineering of Halogenated Polypeptoids. The Journal of Physical Chemistry B, 126(22), 4152-4159. DOI: 10.1021/acs.jpcb.2c01843 DOI: https://doi.org/10.1021/acs.jpcb.2c01843

Shields, Z. P., Murray, J. S., & Politzer, P. (2010). Directional tendencies of halogen and hydrogen bonds. International Journal of Quantum Chemistry, 110(15), 2823-2832. https://doi.org/10.1002/qua.22787 DOI: https://doi.org/10.1002/qua.22787

Smirnov, A. S., Mikherdov, A. S., Rozhkov, A. V., Gomila, R. M., Frontera, A., Kukushkin, V. Y., & Bokach, N. A. (2023). Halogen Bond-Involving Supramolecular Assembly Utilizing Carbon as a Nucleophilic Partner of I⋅⋅⋅C Non-Covalent Interaction. Chemistry – An Asian Journal, 18(7), e202300037. https://doi.org/10.1002/asia.202300037 DOI: https://doi.org/10.1002/asia.202300037

Uppuladinne, M. V. N., Jani, V., Sonavane, U. B., & Joshi, R. R. (2013). Quantum chemical studies of novel 2′-4′ conformationally restricted antisense monomers. International Journal of Quantum Chemistry, 113(23), 2523-2533. https://doi.org/10.1002/qua.24492 DOI: https://doi.org/10.1002/qua.24492

Wang, C.R., & Lu, Q.B. (2010). Molecular Mechanism of the DNA Sequence Selectivity of 5-Halo-2′-Deoxyuridines as Potential Radiosensitizers. Journal of the American Chemical Society, 132(42), 14710-14713. DOI: 10.1021/ja102883a DOI: https://doi.org/10.1021/ja102883a

Yu, Y., Liu, A., Dhawan, G., Mei, H., Zhang, W., Izawa, K., Soloshonok, V. A., & Han, J. (2021). Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chinese Chemical Letters, 32(11), 3342-3354. https://doi.org/10.1016/j.cclet.2021.05.042 DOI: https://doi.org/10.1016/j.cclet.2021.05.042

Zdrowowicz, M., Wityk, P., Michalska, B., & Rak, J. (2016). 5-Bromo-2’-deoxycytidine — a Potential DNA Photosensitizer. Organic and Biomolecular Chemistry, 14, 9312-9321. DOI: 10.1039/C6OB01446A DOI: https://doi.org/10.1039/C6OB01446A

Downloads

Published

2023-11-30

How to Cite

Rajamani, R., K, I., P, S., G, P., Wong, L. S., & Djearamane, S. (2023). Structure and Reactivity of Halogenated GC PNA Base Pairs – A DFT Approach. Journal of Experimental Biology and Agricultural Sciences, 11(5), 800–808. https://doi.org/10.18006/2023.11(5).800.808

Issue

Section

RESEARCH ARTICLES

Categories