Assessment of Heavy Metal Content and Consumption Risks At Selected Paddy Field in Malaysia: A Review

Authors

  • Chew Jia Yin Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
  • Cheng Wan Hee Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
  • Wong Ling Shing Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
  • Ong Ghim Hock Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
  • Geetha Subramaniam Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
  • Jayanthi Barasarathi Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.

DOI:

https://doi.org/10.18006/2023.11(5).791.799

Keywords:

Paddy, Copper, Cadmium, Lead, Health risk assessment

Abstract

As the Malaysian population grows, there is a high demand for rice, the main staple food in this region. This has caused the overuse of agrochemicals that contain heavy metals and the utilization of contaminated groundwater to increase paddy yield, posing a risk to humans. This study reviewed the accumulated heavy metals in paddy fields of Malaysia's Selangor, Kedah and Sabah states and further calculated the consumption risks of rice grains from the selected areas. The study revealed that paddy soil in Ranau Valley (Sabah), Kota Marudu (Sabah) and Tanjung Karang (Selangor) showed presences of Cu and Cd in high concentration, respectively, creating higher potential to be uptake by paddy roots. These findings also revealed that Ranau Valley (Sabah) paddy grains contained high Cu and Cd concentrations, while Sabak Bernam (Selangor) contained high Pb concentrations. Further, a higher Cd concentration was reported from the Ranau Valley (Sabah), while the higher Pb concentrations were reported from the samples collected from Sabak Bernam (Selangor), Tanjung Karang (Selangor) and Kubang Pasu (Kedah). Based on the health risk indices calculation in this study, carcinogenic and non-carcinogenic health risks in all study areas except in Kubang Pasu (Kedah) and Langkawi (Kedah) are likely to occur due to Cu mining activities, ultrabasic soil contamination, utilization of contaminated groundwater and rock phosphate fertilizer and vehicular emission. Regular assessment of heavy metal content and consumption risks of paddy is essential to ensure the paddy field is free from contamination and will help protect the ecosystem and human health.

References

Akinbile, C. O., El-Latif, K. M. A., Abdullah, R., & Yusoff, M. S. (2011). Rice Production and Water use Efficiency for Self-Sufficiency in Malaysia: A Review. Trends in Applied Sciences Research, 6, 1127-1140. DOI: https://doi.org/10.3923/tasr.2011.1127.1140

Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. (2021). Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9(3), 24. DOI: https://doi.org/10.3390/toxics9030042

Ali, I., Khan, M. J., Khan, M., Deeba, F., Hussain, H., Abbas, M., & Khan, M. D. (2018). Impact of Pollutants on Paddy Soil and Crop Quality. Environmental Pollution of Paddy Soils, 53, 125-137. https://doi.org/10.1007/978-3-319-93671-0_8125-137 DOI: https://doi.org/10.1007/978-3-319-93671-0_8

Alias, H., Surin, J., Mahmud, R., Shafie, A., Zin, J. M., Mohamad Nor, M., Ibrahim, A. S., & Rundi, C. (2014). Spatial distribution of malaria in Peninsular Malaysia from 2000 to 2009. Parasites & Vectors, 7(1), 186. DOI: https://doi.org/10.1186/1756-3305-7-186

Hasan, G. M. M. A., Das, A. K., & Satter, M. A. (2022). Accumulation of Heavy Metals in Rice (Oryza sativa. L) Grains Cultivated in Three Major Industrial Areas of Bangladesh. Journal of environmental and public health, 2022, 1836597. https://doi.org/10.1155/2022/1836597. DOI: https://doi.org/10.1155/2022/1836597

Appendix G: Calculating Exposure Doses. (2005). Retrieved from Agency for Toxic Substances and Disease Registry. Retrieved from https://www.atsdr.cdc.gov/hac/phamanual/appg.html

Aziz, R. A., Rahim, S. A., Sahid, I., Idris,W. M. R., & BhuiyanM. A. R.(2015). Determination of Heavy Metals Uptake in Soil and Paddy Plants. American-Eurasian Journal of Agriculture and Environment Sciences, 15(2), 161-164.

Aziz, R. A., Yiwen, M., Saleh, M., Salleh, M.N., Gopinath, S.C.B., Giap, S.G.E., Chinni, S.V., & Gobinath, R. (2023). Bioaccumulation and Translocation of Heavy Metals in Paddy (Oryza sativa L.) and Soil in Different Land Use Practices. Sustainability, 15, 13426. https://doi.org/10.3390/su151813426 DOI: https://doi.org/10.3390/su151813426

Chari, S. (2016). Lead Poisoning. Retrieved from MedIndia: https://www.medindia.net/patients/patientinfo/lead-poisoning.htm.

Chibuike, G. U., & Obiora, S. C. (2014). Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Applied and Environmental Soil Science, 2014, Article ID 752708. https://doi.org/10.1155/2014/752708. DOI: https://doi.org/10.1155/2014/752708

Djahed, B., Taghavi, M., Farzadkia, M., Norzaee, S., & Miri, M. (2018). Stochastic exposure and health risk assessment of rice contamination to the heavy metals in the market of Iranshahr, Iran. Food and Chemical Toxicology, 115, 405-412. DOI: https://doi.org/10.1016/j.fct.2018.03.040

Engwa, G. A., Ferdinand, P. U., Nwalo, F. N., & Unachukwu, M. N. (2019). Mechanism and health effects of heavy metal toxicity in humans. Poisoning in the modern world-new tricks for an old dog?. https://doi.org/10.5772/intechopen.82511 DOI: https://doi.org/10.5772/intechopen.82511

Eske, J. (2020). Copper toxicity: Symptoms and treatment. Retrieved from Medical News Today: https://www.medicalnewstoday.com/articles/copper-toxicity.

EU Soil Policy (2018). Retrieved from European Commission on Environment: https://ec.europa.eu/environment/soil/index_en.htm

Ezeofor, C. C., Ihedioha, J. N., Ujam, O. T., Ekere, N. R., & Nwuche,C. O. (2019). Human health risk assessment of potential toxic elements in paddy soil and rice (Oryza sativa) from Ugbawka fields, Enugu, Nigeria. Open Chemistry, 17(1), 1050-1060. DOI: https://doi.org/10.1515/chem-2019-0121

Fakhri, Y., Bjørklund, G., Bandpei, A. M., Chirumbolo, S., Keramati, H., et al. (2018). Concentrations of arsenic and lead in rice (Oryza sativa L.) in Iran: A systematic review and carcinogenic risk assessment. Food and Chemical Toxicology, 113, 267-277. DOI: https://doi.org/10.1016/j.fct.2018.01.018

Fan, Y., Zhu, T., Li, M., He, J., & Huang, R. (2017). Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China. Journal of Healthcare Engineering, 2017, 4124302. https://doi.org/10.1155/2017/4124302 DOI: https://doi.org/10.1155/2017/4124302

FAO/WHO (1984) List of Maximum Levels Recommended for Contaminants by the Joint FAO/ WHO Codex Alimentarius Commission. Second Series. CAC/FAL, Rome, 3, 1-8.

FAO/WHO. (2011). Evaluation of Certain Food Additives and Contaminants. Retrieved from WHO Technical Report Series 960: http://apps.who.int/iris/bitstream/handle/10665/44515/WHO_TRS_960_eng.pdf?sequence=1

Firdaus, R., Tan, M. L., Rahmat, S. R., & Gunaratne, M. S. (2020). Paddy, rice and food security in Malaysia: A review of climate change impacts. Cogent Social Sciences, 6(1). https://doi.org/10.1080/23311886.2020.1818373 DOI: https://doi.org/10.1080/23311886.2020.1818373

França, F. C. S. S., Albuuerque, A. M. A., Almeida, A. C., Silveira, P. B., Filho, C. A., Hazin, C. A., & Honorato, E. V. (2017). Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil. Food Chemistry, 215, 171-176. https://doi.org/10.1016/j.foodchem.2016.07.168 DOI: https://doi.org/10.1016/j.foodchem.2016.07.168

Gao, Y., Duan, Z., Zhang, L., Sun, D., & Li, X. (2022). The Status and Research Progress of Cadmium Pollution in Rice- (Oryza sativa L.) and Wheat- (Triticum aestivum L.) Cropping Systems in China: A Critical Review. Toxics, 10(12), 794. https://doi.org/10.3390/toxics10120794 DOI: https://doi.org/10.3390/toxics10120794

Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782 DOI: https://doi.org/10.3390/ijerph17113782

Guo, B., Hong, C., Tong, W., Xu, M., Huang, C., Yin, H., Lin, Y., & Fu, Q. (2020). Health risk assessment of heavy metal pollution in a soil-rice system: a case study in the Jin-Qu Basin of China. Scientific Reports, 10, 11490.https://doi.org/10.1038/s41598-020-68295-6 DOI: https://doi.org/10.1038/s41598-020-68295-6

Health Problems Caused by Lead. (2018). Retrieved from Centers for Disease Control and Prevention: https://www.cdc.gov/niosh/ topics/lead/health.html

Huang, Z., Pan, X. D., Wu, P. G., Han, J. L., & Chen, Q. (2013). Health Risk Assessment of Heavy Metals in Rice to the Population in Zhejiang, China. PLoS One, 8(9), e75007. https://doi.org/10.1371/journal.pone.0075007 DOI: https://doi.org/10.1371/journal.pone.0075007

Ihedioha, J. N., Ujam, O. T., Nwuche, C. O., Ekere, N. R., & Chime, C. C. (2016). Assessment of heavy metal contamination of rice grains (Oryza sativa) and soil from Ada field, Enugu, Nigeria: Estimating the human health risk. Human and Ecological Risk Assessment, 22, 1665–1677. DOI: https://doi.org/10.1080/10807039.2016.1217390

Integrated Risk Information System (IRIS). (2011). Retrieved from US EPA: https://www.epa.gov/iris

Inventori Rangkaian Jalan Utama Persekutuan Semanjung Malaysia. (2021). Retrieved from Kementerian Kerja Raya: https://www.kkr.gov.my/ms/node/2431

Irshad, M. K., Zhu, S., Javed, W., Lee, J. C., Mahmood, A., Lee, S. S., Shang, J., Albasher, G., Ali, A. (2023). Risk assessment of toxic and hazardous metals in paddy agroecosystem by biochar-for bio-membrane applications. Chemosphere, 340, 139719. DOI: https://doi.org/10.1016/j.chemosphere.2023.139719

Jusoh, K., Ramlee, A. R., Jamil, H., Ismail, Z., & Ismail, B. S. (2013). Heavy metal content of paddy plants in Langkawi, Kedah, Malaysia school of environmental and natural resource sciences, faculty of science and technology. Australian Journal of Basic and Applied Sciences, 7(2), 123–127.

Kahn, A. H., Nolting, R. F., Van der Gaast, S. J., & Van Raaphorst, W. (1992). Trace element geochemistry at the sediment-water interface in the North Sea and the Western Wadden Sea. NIOZ-RAPPORT, 10 (1), 18. Retrieved from https://www.vliz.be/imisdocs/publications/263202.pdf.

Kiprop, J. (2021). What Are The Sources And Effects Of Copper Pollution In The Environment? Retrieved from WorldAtlas: https://www.worldatlas.com/articles/what-are-the-sources-and-effects-of-copper-pollution-in-the-environment.html

Lead Poisoning and Health. (2019). Retrieved from World Health Organization: Retrieved from https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health

Liu, M., Yang, Y., Yun, X., Zhang, M., & Wang, J. (2015). Concentrations, distribution, sources, and ecological risk assessment of heavy metals in agricultural topsoil of the Three Gorges Dam region, China. Environmental Monitoring and Assessment, 187, 1-11. DOI: https://doi.org/10.1007/s10661-015-4360-6

Lo, V. Y., & Saibeh, K. (2013). Phytoremediation using Typha angustifolia L. for Mine Water Effluence Treatment: Case Study of Ex-Mamut Copper Mine, Ranau, Sabah. Borneo Science, 33, 16-22.

Looi, L. J., Aris, A. Z., Lim, W. Y., & Haris, H. (2014). Bioconcentration and Translocation Efficiency of Metals in Paddy (Oryza sativa): A Case Study from Alor Setar, Kedah, Malaysia. Sains Malaysiana, 43(4), 521–528.

Malaysia Food Regulations 1985. (1985). Retrieved from https://extranet.who.int/nutrition/gina/sites/default/filesstore/MYS%201985%20Food%20Regulations_0.pdf

Malaysia Population 1950-2021. (2021). Retrieved from Macrotrends: https://www.macrotrends.net/countries/MYS/ malaysia/population

Masindi, V., & Meudi, K. L. (2018). Environmental Contamination by Heavy Metals. In Saleh, H.E.M., & Aglan, R.F. (Eds.) Heavy Metals. Intechopen publication https://doi.org/10.5772/intechopen.76082. DOI: https://doi.org/10.5772/intechopen.76082

Moussiegt, A., Ferreira, J., Aboab, J., & Silva, D. (2020). She Has The Blues: An Unusual Case of Copper Sulphate Intoxication. European Journal of Case Reports in Internal Medicine,7(2). https://doi.org/10.12890/2020_001394 DOI: https://doi.org/10.12890/2020_001394

Munir, R., Jan, M., Muhammad, S., Afzal, M., Jan, N.,Yasin, M. U., Munir, I., et al. (2023). Detrimental effects of Cd and temperature on rice and functions of microbial community in paddy soils. Environmental Pollution, 324(121371), 0269-7491. https://doi.org/10.1016/j.envpol.2023.121371 DOI: https://doi.org/10.1016/j.envpol.2023.121371

Nishijo, M., Nakagawa, H., Suwazono, Y., Nogawa, K., & Kido, T. (2017). Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case–control analysis of a follow-up study in Japan. BMJ Open, 7(7).e015694. https://doi.org/10.1136/bmjopen-2016-015694 DOI: https://doi.org/10.1136/bmjopen-2016-015694

Omar, S. C., Shaharudin, A., & Tumin S. A. (2019). The Status of the Paddy and Rice Industry in Malaysia. Retrieved from Khazanah Research Institute: http://www.krinstitute.org/assets/ contentMS/img/template/editor/Rice%20Report_Ppt%20Slide_Sarena.pdf

Omar, N. A., Praveena, S. M., Aris, A. Z., & Hashim, Z. (2015). Health Risk Assessment using in vitro digestion model in assessing bioavailability of heavy metal in rice: A preliminary study. Food Chemistry, 188, 46-50. https://doi.org/10.1016/ j.foodchem.2015.04.087 DOI: https://doi.org/10.1016/j.foodchem.2015.04.087

Payus, C., Talip, A. F. A., & Tan, W. H. (2015). Heavy Metals Accumulation in Paddy Cultivation Area of Kompipinan, Papar District, Sabah. Journal of Sustainability Science and Management, 10(1), 76-86.

Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine,8(3), 135–145. https://doi.org/10.22088/cjim.8.3.135

Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365-385. https://doi.org/10.1016/j.envint.2019.01.067 DOI: https://doi.org/10.1016/j.envint.2019.01.067

Roberts, T. L. (2014). Cadmium and phosphorous fertilizers: the issues and the science. Procedia Engineering, 83, 52-59. DOI: https://doi.org/10.1016/j.proeng.2014.09.012

Rudzi, S. K., Ho, Y. B., & Kharni, I. I. A. (2018). Heavy Metals Contamination in Paddy Soil and Water and Associated Dermal Health Risk Among Farmers. Malaysian Journal of Medicine and Health Sciences, 14(2), 2-10. https://medic.upm.edu.my/upload/ dokumen/2018120408433001_MJMHS_SP_Nov_2018.pdf

Satpathy, D., Reddy, M. V., & Dhal, S. P. (2014). Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L.) at the East Coast of India. BioMed Research International, 2014, 11. https://doi.org/10.1155/2014/545473 DOI: https://doi.org/10.1155/2014/545473

Shi, Z., Carey, M., Meharg, C. Williams, P. N., Signes-Pastor, A. J.,et al.(2020). Rice Grain Cadmium Concentrations in the Global Supply-Chain. Exposure and Health, 12, 869–876. https://doi.org/10.1007/s12403-020-00349-6 DOI: https://doi.org/10.1007/s12403-020-00349-6

Soil Environmental Quality Standards (GB 15618-2018). (2018). Retrieved from Chinese Standard GB/T, GBT, GB: https://www.chinesestandard.net/PDF/English.aspx/GB15618-2018

Stanislawska-Glubiak, E., & Korzeniowska, J. (2018). Fate of Copper in Soils from Different Fertilizer Doses in Relation to Environmental Risk Assessment. Polish Journal of Environmental Studies, 27(4), 1735–1741. DOI: https://doi.org/10.15244/pjoes/77919

Suciu, N. A.,Vivo, R. D., Rizzati, N., & Capri, E. (2022). Cd content in phosphate fertilizer: Which potential risk for the environment and human health? Current Opinion in Environmental Science & Health, 30(100392), 2468-5844. https://doi.org/10.1016/j.coesh.2022.100392 DOI: https://doi.org/10.1016/j.coesh.2022.100392

Tang, S. T., Lu, Y. M., Xiao, S. B., Cui, H., & Wei, S. Q. (2023). Huan jing ke xue= Huanjing kexue, 44(10), 5704–5717. https://doi.org/10.13227/j.hjkx.202210317

TatahMentan, M., Nyachoti, S., Scott, L., Phan, N., Okwori, F. O., Felemban, N., & Godebo, T. R. (2020). Toxic and Essential Elements in Rice and Other Grains from the United States and Other Countries. International Journal of Environmental Research and Public Health, 17(21), 8128. https://doi.org/10.3390/ijerph17218128 DOI: https://doi.org/10.3390/ijerph17218128

Teles, A. P. B., Rodrigues, M., & Pavinato, P. S. (2020). Solubility and Efficiency of Rock Phosphate Fertilizers Partially Acidulated with Zeolite and Pillared Clay as Additives. Agronomy, 10(7), 918. https://doi.org/10.3390/agronomy10070918 DOI: https://doi.org/10.3390/agronomy10070918

The Risk Assessment Information System (RAIS). (2011). Retrieved from US DOE: https://rais.ornl.gov/

Wuana, R. A., & Okieimen, F. E. (2011). Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. International Scholarly Research Notices, 2011, 1 - 20. https://doi.org/10.5402/2011/402647 DOI: https://doi.org/10.5402/2011/402647

Yan, A., Wang, Y., Tan, S. N., Yusof, M. L. M., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 11(359). https://doi.org/10.3389/fpls.2020.00359 DOI: https://doi.org/10.3389/fpls.2020.00359

Yap, D. W., Adezrian, J., Jusoh, K., Ismail, B. S., & Mahir, A. (2009). The Uptake of Heavy Metals by Paddy Plants (Oryza sativa) in Kota Marudu, Sabah, Malaysia. American-Eurasian Journal of Agriculture and Environment Sciences, 6(1), 16-19.

Yoon, D. H., Choi, W. S., Hong, Y. K., Lee, Y. B., & Kim, S. C. (2019). Effect of chemical amendments on reduction of bioavailable heavy metals and ecotoxicity in soil. Applied Biological Chemistry, 62(53). https://doi.org/10.1186/s13765-019-0460-2 DOI: https://doi.org/10.1186/s13765-019-0460-2

Zakaria, Z., Zulkafflee, N. S., Redzuan, N. A. M., Selamat, J., Ismail, M. R., et al. (2021). Understanding Potential Heavy Metal Contamination, Absorption, Translocation and Accumulation in Rice and Human Health Risks. Plants, 10, 1070. https://doi.org/10.3390/plants10061070 DOI: https://doi.org/10.3390/plants10061070

Zeng, F., Wei, W., Li, M., Huang, R., Yang, F., & Duan, Y. (2015). Heavy Metal Contamination in Rice-Producing Soils of Hunan Province, China and Potential Health Risks. International Journal of Environmental Research and Public Health, 12(12), 15584–15593. https://doi.org/10.3390/ijerph121215005 DOI: https://doi.org/10.3390/ijerph121215005

Zheng, S., Wang, Q., Yuan, Y., & Sun, W. (2020). Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chemistry, 316, 126213. https://doi.org/10.1016/j.foodchem.2020.126213 DOI: https://doi.org/10.1016/j.foodchem.2020.126213

Zulkafflee, N. S., Redzuan, N. A. M., Hanafi, Z., Selamat, J., Ismail, M. R., Praveena, S. M., & Razis, A. F. A. (2019). Heavy Metal in Paddy Soil and its Bioavailability in Rice Using In Vitro Digestion Model for Health Risk Assessment. International Journal of Environmental Research and Public Health, 16, 4769. https://doi:10.3390/ijerph16234769 DOI: https://doi.org/10.3390/ijerph16234769

Zulkafflee, N. S., Redzuan, N. A. M., Selamat, J., Ismail, M. R., Praveena, S. M., & Razis, A. F. A. (2021). Evaluation of Heavy Metal Contamination in Paddy Plants at the Northern Region of Malaysia Using ICPMS and Its Risk Assessment. Plants, 10(1), 3. https://doi.org/10.3390/plants10010003 DOI: https://doi.org/10.3390/plants10010003

Downloads

Published

2023-11-30

How to Cite

Yin, C. J., Hee, C. W., Shing, W. L., Hock, O. G., Subramaniam, G., & Barasarathi, J. (2023). Assessment of Heavy Metal Content and Consumption Risks At Selected Paddy Field in Malaysia: A Review. Journal of Experimental Biology and Agricultural Sciences, 11(5), 791–799. https://doi.org/10.18006/2023.11(5).791.799

Issue

Section

REVIEW ARTICLES