Antimicrobial and anti-biofilm activities of plant extracts against Pseudomonas aeruginosa – a review
DOI:
https://doi.org/10.18006/2023.11(5).780.790Keywords:
Pseudomonas aeruginosa, Plant extracts, Antimicrobial activity, Anti-biofilm activity, Human healthAbstract
Antimicrobial resistance among bacterial pathogens, including Pseudomonas aeruginosa, is a global problem that has led to research on naturally occurring compounds as an alternative source of antibacterial and anti-biofilm agents. This review focuses on determining plant extracts' antimicrobial and anti-biofilm activities against P. aeruginosa, an opportunistic pathogen contributing to microbial and biofilm-associated infections in humans. Medicinal plants are being widely researched as they are rich sources of phytochemicals, including flavonoids, alkaloids, tannins and terpenoids. These phytochemicals have been well known for their antibacterial activity, which contributes to the effectiveness of certain plants, including Punica granatum and Triumfetta welwitschia, against P. aeruginosa. Hypericum perforatum and Berginia ciliata contains phytochemicals that directly inhibit the quorum sensing mechanism, inhibiting the direct cell-to-cell communication, thereby preventing or reducing biofilm formation by P. aeruginosa. Plant extracts also inhibit bacterial growth and should be considered an alternative to antibiotics. Furthermore, plant extracts can be used with antibiotics for better efficacy against P. aeruginosa. However, more research must be carried out to select plants with a broad spectrum of activity against not only P. aeruginosa infections but other gram-negative bacteria in general. It would be economically viable to develop as a therapeutic drug. This would align with the third United Nations sustainable development goals on good health and well-being and is a significant step forward in the battle against antibiotic resistance.
References
Abdel Bar, F. M., Alossaimi, M. A., Elekhnawy, E., Alzeer, M. A. A., Abo Kamer, A., Moglad, E., & ElNaggar, M. H. (2022). Anti-Quorum Sensing and Anti-Biofilm Activity of Pelargonium × hortorum Root Extract against Pseudomonas aeruginosa: Combinatorial Effect of Catechin and Gallic Acid. Molecules, 27(22), 7841. DOI: https://doi.org/10.3390/molecules27227841
Abreu, A.C., McBain, A.J., & Simoes, M. (2012). Plants as sources of new antimicrobials and resistance-modifying agents. Natural Product Reports, 29(9), 1007-1021. DOI: https://doi.org/10.1039/c2np20035j
Abu El-Wafa, W. M., Ahmed, R. H., & Ramadan, M.A. (2020). Synergistic effects of pomegranate and rosemary extracts in combination with antibiotics against antibiotic resistance and biofilm formation of Pseudomonas aeruginosa. Brazilian Journal of Microbiology, 51(3),1079-1092. DOI: https://doi.org/10.1007/s42770-020-00284-3
Ahmed, O.M., Mohamed, H., Salem, W., Afifi, M.M., & Song, Y. (2021). Efficacy of Ethanolic Extract of Syzygium aromaticum in the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates Associated with Urinary Tract Infections. Evidence-based Complementary and Alternative Medicine : eCAM, 2021.. doi: 10.1155/2021/6612058. DOI: https://doi.org/10.1155/2021/6612058
Alam, K., Farraj, D. A. A., Mah-E-Fatima, S., Yameen, M. A., Elshikh, M. S., et al. (2020). Anti-biofilm activity of plant derived extracts against infectious pathogen- Pseudomonas aeruginosa PAO1. Journal of infection and public health, 13(11), 1734–1741. https://doi.org/10.1016/j.jiph.2020.07.007. DOI: https://doi.org/10.1016/j.jiph.2020.07.007
Aliyu, A.B., Koorbanally, N.A., Moodley, B., Singh, P., & Chenia, H.Y. (2016). Quorum sensing inhibitory potential and molecular docking studies of sesquiterpene lactones from Vernonia blumeoides. Phytochemistry, 126, 23-33 DOI: https://doi.org/10.1016/j.phytochem.2016.02.012
Alonso, B., Fernández-Barat, L., Di Domenico, E. G., Marín, M., Cercenado, E., Merino, I., de Pablos, M., Muñoz, P., & Guembe, M. (2020). Characterization of the virulence of Pseudomonas aeruginosa strains causing ventilator-associated pneumonia. BMC infectious diseases, 20(1), 909. https://doi.org/10.1186/s12879-020-05534-1 DOI: https://doi.org/10.1186/s12879-020-05534-1
Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature reviews. Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380. DOI: https://doi.org/10.1038/nrmicro3380
Cheesman, M. J., Ilanko, A., Blonk, B., & Cock, I. E. (2017). Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution?. Pharmacognosy reviews, 11(22), 57–72. https://doi.org/10.4103/phrev.phrev_21_17. DOI: https://doi.org/10.4103/phrev.phrev_21_17
Das, A., Das, M.C., Sandhu, P., Tribedi, P., De, U.C., et al. (2017). Antibiofilm activity of Parkia javanica against Pseudomonas aeruginosa: a study with fruit extract. RSC advances, 7(9), 5497-5513. DOI: https://doi.org/10.1039/C6RA24603F
Dincer, S., Uslu, F.M., & Delik, A. (2020). Antibiotic resistance in biofilm. In Bacterial biofilms. IntechOpen. 2020. https://doi:10.5772/intechopen.92388 DOI: https://doi.org/10.5772/intechopen.92388
Doğan, Ş., Gökalsın, B., Şenkardeş, İ., Doğan, A., & Sesal, N. C. (2019). Anti-quorum sensing and anti-biofilm activities of Hypericum perforatum extracts against Pseudomonas aeruginosa. Journal of ethnopharmacology, 235, 293–300. https://doi.org/10.1016/j.jep.2019.02.020. DOI: https://doi.org/10.1016/j.jep.2019.02.020
Dzotam, J. K., & Kuete, V. (2017). Antibacterial and antibiotic-modifying activity of methanol extracts from six Cameroonian food plants against multidrug-resistant enteric bacteria. BioMed Research International. 1583510. doi: 10.1155/2017/1583510. Epub 2017 Aug 20. DOI: https://doi.org/10.1155/2017/1583510
Elisha, I.L., Botha, F.S., McGaw, L.J., & Eloff, J.N. (2017). The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complementary and Alternative Medicine, 17(1), 1-10. DOI: https://doi.org/10.1186/s12906-017-1645-z
Emam, M., Abdel-Haleem, D.R., Salem, M.M., Abdel-Hafez, L.J.M., Latif, R.R.A., et al. (2021). Phytochemical Profiling of Lavandula coronopifolia Poir. Aerial Parts Extract and Its Larvicidal, Antibacterial, and Antibiofilm Activity Against Pseudomonas aeruginosa. Molecules, 26, 1710. https://doi.org/10.3390/molecules26061710 DOI: https://doi.org/10.3390/molecules26061710
Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in medicinal chemistry, 6, 25–64. https://doi.org/10.4137/PMC.S14459. DOI: https://doi.org/10.4137/PMC.S14459
Famuyide, I.M., Aro, A.O., Fasina, F.O., Eloff, J.N., & McGaw, L.J. (2019). Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated south African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complementary and Alternative Medicine, 19(1), 1-13. DOI: https://doi.org/10.1186/s12906-019-2547-z
González, J.F., Hahn, M.M., & Gunn, J.S. (2018). Chronic biofilm-based infections: skewing of the immune response. Pathogens and Disease, 76(3):fty023. doi: 10.1093/femspd/fty023. DOI: https://doi.org/10.1093/femspd/fty023
Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1), 241-272. DOI: https://doi.org/10.1007/s11101-018-9591-z
Guzzo, F., Scognamiglio, M., Fiorentino, A., Buommino, E., & D'Abrosca, B. (2020). Plant Derived Natural Products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm Activity and Molecular Mechanisms. Molecules (Basel, Switzerland), 25(21), 5024. https://doi.org/10.3390/ molecules25215024. DOI: https://doi.org/10.3390/molecules25215024
Husain, F. M., Ahmad, I., Al-Thubiani, A. S., Abulreesh, H. H., AlHazza, I. M., & Aqil, F. (2017). Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing - Regulated Production of Virulence Factors and Biofilm in Test Bacteria. Frontiers in microbiology, 8, 727. https://doi.org/10.3389/fmicb.2017.00727 DOI: https://doi.org/10.3389/fmicb.2017.00727
Issa, H.B., Phan, G., & Broutin, I. (2018). Functional mechanism of the efflux pumps transcription regulators from Pseudomonas aeruginosa based on 3D structures. Frontiers in Molecular Biosciences, 5, 57. DOI: https://doi.org/10.3389/fmolb.2018.00057
Jennings, L. K., Storek, K. M., Ledvina, H. E., Coulon, C., Marmont, L. S., et al. (2015). Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proceedings of the National Academy of Sciences of the United States of America, 112(36), 11353–11358. https://doi.org/10.1073/pnas.1503058112. DOI: https://doi.org/10.1073/pnas.1503058112
Kalia, M., Yadav, V. K., Singh, P. K., Sharma, D., Pandey, H., Narvi, S. S., & Agarwal, V. (2015). Effect of Cinnamon Oil on Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa. PloS one, 10(8), e0135495. https://doi.org/10.1371/journal.pone.0135495. DOI: https://doi.org/10.1371/journal.pone.0135495
Karuppiah, P., & Rajaram, S. (2012). Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens. Asian Pacific Journal of Tropical Biomedicine, 2(8), 597-601. DOI: https://doi.org/10.1016/S2221-1691(12)60104-X
Khare, T., Anand, U., Dey, A., Assaraf, Y. G., Chen, Z. S., Liu, Z., & Kumar, V. (2021). Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Frontiers in pharmacology, 12, 720726. https://doi.org/10.3389/ fphar.2021.720726. DOI: https://doi.org/10.3389/fphar.2021.720726
Labovska, S. (2021). Pseudomonas aeruginosa as a cause of nosocomial infections. In Das, T. (Ed.), Pseudomonas aeruginosa - Biofilm Formation, Infections and Treatments. IntechOpen. https://doi.org/10.5772/intechopen.95908 DOI: https://doi.org/10.5772/intechopen.95908
Lin, J., & Cheng, J. (2019). Quorum sensing in Pseudomonas aeruginosa and its relationship to biofilm development. In Introduction to Biofilm Engineering, ACS Symposium Series, Vol. 1323 (pp. 1-16). American Chemical Society, DOI: 10.1021/bk-2019-1323.ch001. DOI: https://doi.org/10.1021/bk-2019-1323.ch001
Meng, L., Liu, H., Lan, T., Dong, L., Hu, H., Zhao, S., Zhang, Y., Zheng, N., & Wang, J. (2020). Antibiotic Resistance Patterns of Pseudomonas spp. Isolated From Raw Milk Revealed by Whole Genome Sequencing. Frontiers in microbiology, 11, 1005. https://doi.org/10.3389/fmicb.2020.01005. DOI: https://doi.org/10.3389/fmicb.2020.01005
Mishra, S., Gupta, A., Upadhye, V., Singh, S. C., Sinha, R. P., & Häder, D. P. (2023). Therapeutic Strategies against Biofilm Infections. Life (Basel), 13(1):172, doi: 10.3390/life13010172. DOI: https://doi.org/10.3390/life13010172
Mombeshora, M., Chi, G.F., & Mukanganyama, S. (2021). Antibiofilm activity of extract and a compound isolated from Triumfetta welwitschii against Pseudomonas aeruginosa. Biochemistry Research International, 2021. https://doi.org/10.1155/2021/9946183 DOI: https://doi.org/10.1155/2021/9946183
Mombeshora, M., & Mukanganyama, S. (2019). Antibacterial activities, proposed mode of action and cytotoxicity of leaf extracts from Triumfetta welwitschii against Pseudomonas aeruginosa. BMC complementary and alternative medicine, 19(1), 315. https://doi.org/10.1186/s12906-019-2713-3 DOI: https://doi.org/10.1186/s12906-019-2713-3
Montero, M.M., Lopez Montesinos, I., Knobel, H. et al. (2020). Risk factors for mortality among patients with Pseudomonas aeruginosa bloodstream infections, Journal of Clinical Medicine ,9,(2), 514. DOI: https://doi.org/10.3390/jcm9020514
Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N., & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi journal of biological sciences, 25(2), 361–366. https://doi.org/10.1016/j.sjbs.2017.02.004. DOI: https://doi.org/10.1016/j.sjbs.2017.02.004
Munir, S., Shah, A. A., Shahid, M., & Manzoor, I. (2020). Quorum sensing interfering strategies and their implications in the management of biofilm-associated bacterial infections. Brazilian Archives of Biology and Technology, 63, e20190555. DOI: https://doi.org/10.1590/1678-4324-2020190555
Munita, J.M., & Arias, C.A. (2016). Mechanisms of antibiotic resistance. Virulence mechanisms of bacterial pathogens. Microbiology Spectrum, 4(2), 10.1128/microbiolspec.VMBF-0016-2015 481-511. DOI: https://doi.org/10.1128/9781555819286.ch17
Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel, Switzerland), 6(12), 1451–1474. https://doi.org/10.3390/ph6121451 DOI: https://doi.org/10.3390/ph6121451
Onivogui, G., Letsididi, R., Diaby, M., Wang, L., & Song, Y. (2016). Influence of extraction solvents on antioxidant and antimicrobial activities of the pulp and seed of Anisophyllea laurina R. Br. ex Sabine fruits. Asian Pacific Journal of Tropical Biomedicine, 6(1), 20-25. DOI: https://doi.org/10.1016/j.apjtb.2015.09.023
Owusu, E., Ahorlu, M. M., Afutu, E., Akumwena, A., & Asare, G. A. (2021). Antimicrobial Activity of Selected Medicinal Plants from a Sub-Saharan African Country against Bacterial Pathogens from Post-Operative Wound Infections. Medical sciences (Basel, Switzerland), 9(2), 23. https://doi.org/10.3390/medsci9020023. DOI: https://doi.org/10.3390/medsci9020023
Pachori, P., Gothalwal, R., & Gandhi, P. (2019). Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes and Diseases, 6(2),109-119. doi: 10.1016/j.gendis.2019.04.001. DOI: https://doi.org/10.1016/j.gendis.2019.04.001
Paczkowski, J. E., Mukherjee, S., McCready, A. R., Cong, J. P., Aquino, C. J., et al. (2017). Flavonoids Suppress Pseudomonas aeruginosa Virulence through Allosteric Inhibition of Quorum-sensing Receptors. The Journal of biological chemistry, 292(10), 4064–4076. https://doi.org/10.1074/jbc.M116.770552. DOI: https://doi.org/10.1074/jbc.M116.770552
Papaleo, S., Alvaro, A., Nodari, R., Panelli, S., Bitar, I., & Comandatore, F. (2022). The red thread between methylation and mutation in bacterial antibiotic resistance: How third-generation sequencing can help to unravel this relationship. Frontiers in microbiology, 13, 957901. https://doi.org/10.3389/fmicb.2022.957901 DOI: https://doi.org/10.3389/fmicb.2022.957901
Patel, V., & Patel, R. (2016). Plants as latent sources of new antimicrobials and resistance modifying agents against multi drug resistant (MDR) strains. International Journal of Biochemistry and Molecular Biology, 4, 27-42.
Phitaktim, S., Chomnawang, M., Sirichaiwetchakoon, K., Dunkhunthod, B., Hobbs, G., & Eumkeb, G. (2016). Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC microbiology, 16(1), 195. https://doi.org/10.1186/s12866-016-0814-4 DOI: https://doi.org/10.1186/s12866-016-0814-4
Rahman, M.M., Shahriar, M.R., Sultana, N., & Ishika, T. (2017). Antimicrobial activity of some medicinal plant extracts against Gram positive and 38 Gram negative bacteria in Bangladesh. Asian Journal of Medical and Biological Research, 3(4), 405-411. DOI: https://doi.org/10.3329/ajmbr.v3i4.35329
Ramírez-Estrada, S., Borgatta, B., & Rello, J. (2016). Pseudomonas aeruginosa ventilator-associated pneumonia management. Infection and drug resistance, 9, 7–18. DOI: https://doi.org/10.2147/IDR.S50669
Recio, R., Mancheño, M., Viedma, E., Villa, J., Orellana, M. Á., Lora-Tamayo, J., & Chaves, F. (2020). Predictors of Mortality in Bloodstream Infections Caused by Pseudomonas aeruginosa and Impact of Antimicrobial Resistance and Bacterial Virulence. Antimicrobial agents and chemotherapy, 64(2), e01759-19. https://doi.org/10.1128/AAC.01759-19. DOI: https://doi.org/10.1128/AAC.01759-19
Reda, F.M., El-Zawahry, Y.A, & Omar, A.R. (2017). Synergistic effect of combined antibiotic and methanol extract of Eucalyptus camaldulensis leaf against Staphylococcus aureus and Pseudomonas aeruginosa. International Journal of Applied Sciences and Biotechnology, 5(4), 486-497. DOI: https://doi.org/10.3126/ijasbt.v5i4.18620
Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522–554. https://doi.org/10.1080/21505594.2017.1313372. DOI: https://doi.org/10.1080/21505594.2017.1313372
Sagar, P. K., Sharma, P., & Singh, R. (2020). Antibacterial efficacy of different combinations of clove, eucalyptus, ginger, and selected antibiotics against clinical isolates of Pseudomonas aeruginosa. Ayu, 41(2), 123–129. https://doi.org/10.4103/ ayu.AYU_101_19. DOI: https://doi.org/10.4103/ayu.AYU_101_19
Sakha, H., Hora, R., Shrestha, S., Acharya, S., Dhakal, D., Thapaliya, S., & Prajapati, K. (2018). Antimicrobial Activity of Ethanolic Extract of Medicinal Plants against Human Pathogenic Bacteria. Tribhuvan University Journal of Microbiology, 5, 1–6. https://doi.org/10.3126/tujm.v5i0.22292. DOI: https://doi.org/10.3126/tujm.v5i0.22292
Sambyal, S. S., Sharma, P., & Shrivastava, D. (2017). Anti-biofilm activity of selected plant essential oils against Pseudomonas aeruginosa and Staphylococcus aureus. International Journal of Current Microbiology and Applied Sciences, 6(3), 444-450. DOI: https://doi.org/10.20546/ijcmas.2017.603.051
Seukep, A. J., Kuete, V., Nahar, L., Sarker, S. D., & Guo, M. (2020). Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. Journal of pharmaceutical analysis, 10(4), 277–290. https://doi.org/10.1016/ j.jpha.2019.11.002. DOI: https://doi.org/10.1016/j.jpha.2019.11.002
Shah, F., Hasan, Z., & Zaidi, K.U. (2017). Phytochemical constituents and synergistic activity of Olea europaea plant extracts against some human disease-causing species. Journal of Microbiology and Experimentation, 4(5), 00127. DOI: https://doi.org/10.15406/jmen.2017.04.00127
Shriram, V., Khare, T., Bhagwat, R., Shukla, R., & Kumar, V. (2018). Inhibiting Bacterial Drug Efflux Pumps via Phyto-Therapeutics to Combat Threatening Antimicrobial Resistance. Frontiers in microbiology, 9, 2990. https://doi.org/10.3389/ fmicb.2018.02990 DOI: https://doi.org/10.3389/fmicb.2018.02990
Šikić Pogačar, M., Klančnik, A., Bucar, F., Langerholc, T., & Smole Možina, S. (2016). Anti-adhesion activity of thyme (Thymus vulgaris L.) extract, thyme post-distillation waste, and olive (Olea europea L.) leaf extract against Campylobacter jejuni on polystyrene and intestine epithelial cells. Journal of the science of food and agriculture, 96(8), 2723–2730. https://doi.org/ 10.1002/jsfa.7391. DOI: https://doi.org/10.1002/jsfa.7391
Sionov, R.V., & Steinberg, D. (2022). Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms, 10, 1239. https://doi.org/ 10.3390/microorganisms10061239 DOI: https://doi.org/10.3390/microorganisms10061239
Siriwong, S., Teethaisong, Y., Thumanu, K., Dunkhunthod, B., & Eumkeb, G. (2016). The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC pharmacology & toxicology, 17(1), 39. https://doi.org/10.1186/s40360-016-0083-8. DOI: https://doi.org/10.1186/s40360-016-0083-8
Tahrioui, A., Duchesne, R., Bouffartigues, E., Rodrigues, S., Maillot, O., Tortuel, D., et al.. (2019). Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation. NPJ biofilms and microbiomes, 5(1), 15. https://doi.org/10.1038/s41522-019-0088-3 DOI: https://doi.org/10.1038/s41522-019-0088-3
Taylor, P.K., Yeung, A.T., & Hancock, R. E. (2014). Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the DOI: https://doi.org/10.1016/j.jbiotec.2014.09.003
development of novel anti-biofilm therapies. Journal of Biotechnology, 191, 121-130
Ulloa-Urizar, G., Aguilar-Luis, M. A., De Lama-OdrÝa, M.D.C., Camarena-Lizarzaburu, J., & del Valle Mendoza, J. (2015). Antibacterial activity of five Peruvian medicinal plants against Pseudomonas aeruginosa. Asian Pacific Journal of Tropical Biomedicine, 5(11), 928-931. DOI: https://doi.org/10.1016/j.apjtb.2015.07.016
Vandeputte, O. M., Kiendrebeogo, M., Rasamiravaka, T., Stévigny, C., Duez, P., et al. (2011). The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology (Reading, England), 157(Pt 7), 2120–2132. https://doi.org/10.1099/mic.0.049338-0. DOI: https://doi.org/10.1099/mic.0.049338-0
Vetrivel, A., Ramasamy, M., Vetrivel, P., Natchimuthu, S., Arunachalam, S., Kim, G.S., & Murugesan, R. (2021). Pseudomonas aeruginosa Biofilm Formation and Its Control. Biologics, 1(3), 312–336. http://dx.doi.org/10.3390/ biologics1030019 DOI: https://doi.org/10.3390/biologics1030019
Walczak, M., Michalska-Sionkowska, M., Olkiewicz, D., Tarnawska, P., & Warżyńska, O. (2021). Potential of Carvacrol and Thymol in Reducing Biofilm Formation on Technical Surfaces. Molecules (Basel, Switzerland), 26(9), 2723. https://doi.org/10.3390/molecules26092723. DOI: https://doi.org/10.3390/molecules26092723
Yang, L., Ding, W., Xu, Y., Wu, D., Li, S., Chen, J., & Guo, B. (2016). New Insights into the Antibacterial Activity of Hydroxycoumarins against Ralstonia solanacearum. Molecules (Basel, Switzerland), 21(4), 468. https://doi.org/10.3390/ molecules21040468. DOI: https://doi.org/10.3390/molecules21040468
Zeb, A., Ullah, I., Rehman, H.U., et al. (2017). Antibiotic susceptibility patterns of Pseudomonas aeruginosa in tertiary care hospital. Journal of Entomology and Zoology Studies, 20, 50.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.