Highlighting the Importance of Matrix Metalloproteinase 1, 8, and 9 Expression during the Progression of Mycobacterium tuberculosis Infection
DOI:
https://doi.org/10.18006/2024.12(1).49.59Keywords:
Tuberculosis, Drug resistance TB, Matrix metalloproteinase, Antimicrobial resistanceAbstract
Tuberculosis (TB) is one of the major threats to public health; annually it kills more than 1.5 million people around the globe. Tuberculosis is caused by an intracellular pathogen named Mycobacterium tuberculosis (Mtb). This Mtb enters the lung through the respiratory passage by inhalation in healthy individuals. Infection of this disease starts from the settlement of Mtb to the lung alveoli of the host from the external bacilli air droplets. After settlement, the multiplication of Mtb results in the induction of innate immunity through the alveolar macrophages. Compared to other infectious diseases, tuberculosis infection was transmitted rapidly by the infected aerosols released from infected persons to healthy persons through the air. After infection, disease development results in the formation of drug-resistance TB (DR-TB) with four subcategories, i.e. Single-drug resistant TB (SDR-TB), multi-drug resistant TB (MDR-TB), extensive drug-resistant TB (XDR-TB), and total-drug resistant TB (TDR-TB). As a result, this DR-TB may act as a major source of TB death due to spontaneous antimicrobial resistance (AMR). This AMR makes the anti-TB drugs ineffective. In the current scenario, researchers are trying to find the drug target to decrease tuberculosis progression instead of drug resistance. The present review reports that the outcome of research studies showed that matrix metalloproteinase (MMP) may act as a suitable target for treating Mtb infection with the help of specific proteinase inhibitors. Recent reports have shown the specific role of matrix metalloproteinases 1, 8, and 9 in the disease progression and its role in normal homeostasis mechanism with the help of specific animal models/In vitro models.
References
Adami, A.J., & Cervantes, J.L. (2015). The microbiome at the pulmonary alveolar niche and its role in Mycobacterium tuberculosis infection. Tuberculosis, 95, 651-658. DOI: https://doi.org/10.1016/j.tube.2015.07.004
Adeniji, A.A., Knoll, K.E., & Loots, D.T. (2020). Potential anti-TB investigational compounds and drugs with reprposing potential in TB therapy: a conspectus. Applied Microbiology and Biotechnology, 104, 5633-5662. DOI: https://doi.org/10.1007/s00253-020-10606-y
Almutairi, S., Kalloush H.M., Manoon N.A., & Bardaweel S.K. (2023). Matrix Metalloproteinases Inhibitors in Cancer Treatment: An Updated Review (2013-2023). Molecules, 28, 5567. DOI: https://doi.org/10.3390/molecules28145567
Ammerman, N.C., Swanson, R.V., Bautista, E.M., Almeida, D.V., et al. (2018). Impact of Clofazimine Dosing on Treatment Shortening of the First-Line Regimen in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 62, e00636-18. DOI: https://doi.org/10.1128/AAC.00636-18
Angula, K.T., Legoabe, L.J., & Beteck, R.M. (2021). Chemical Classes Presenting Novel Antituberculosis Agents Currently in Different Phases of Drug Development: A 2010-2020 Review. Pharmaceuticals, 14, 461. DOI: https://doi.org/10.3390/ph14050461
Azikin, W., Amiruddin, L., Husein, A., et al. (2017). Matrix Metalloproteinase‐9 (MMP‐9) Level in Tuberculosis Exposed and Infected Children. American Journal of Health Research, 1, 7‐10. DOI: https://doi.org/10.11648/j.ajhr.20170501.12
Behl, T., Kaur, G., Sehgal, A., Bhardwaj, S., et al. (2021). Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perpectives. International Journal of Molecular Sciences, 22, 1413. DOI: https://doi.org/10.3390/ijms22031413
Beroun, A., Mitra, S., Michaluk, P., Pijet, B., et al. (2019). MMPs in learning and memory and neuropsychiatric disorders. Cellular and Molecular Life Sciences, 76, 3207-3228. DOI: https://doi.org/10.1007/s00018-019-03180-8
Bhargava, A., Chatterjee, M., Jain, Y., Chatterjee, B., et al. (2013). Nutritional status of adult patients with pulmonary tuberculosis in rural central India and its association with mortality. PLoS One, 8, e77979. DOI: https://doi.org/10.1371/journal.pone.0077979
Bloom, B.R., Atun, R., Cohen, T., Dye, C., et al. (2017). Tuberculosis. editors. In: Major Infectious Diseases. 3rd Edition. Washington (DC): The international Bank for Reconstruction and Development/The World Bank. DOI: 10.1596/978-1-648-0524-0_ch11.
Bocaneti, F.D., Altamura, G., Corteggio, A., Tanase, O.I., et al. (2023). Expression of collagenases (matrix metalloproteinase-1, -8, -13) and tissue inhibitor of metalloproteinase-3 (TIMP-3) in naturally occurring bovine cutaneous fibropapillomas. Frontiers in Veterinary Science, 9, 1072672. DOI: https://doi.org/10.3389/fvets.2022.1072672
Boom, W.H., Schaible, U.E., & Achkar, J.M. (2021). The knowns and unknowns of latent Mycobacterium tuberculosis infection. The Journal of Clinical Investegation, 131, e136222. DOI: https://doi.org/10.1172/JCI136222
Bussi, C., & Gutierrez, M.G. (2019). Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiology Reviews, 43, 341 – 361. DOI: https://doi.org/10.1093/femsre/fuz006
Cabral-Pacheco, G.A., Garza-Veloz, I., la Rosa, C.C., Ramirez-Acuῆa, J.M., et al. (2020). The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. International Journal of Molecular Sciences, 21, 9739. DOI: https://doi.org/10.3390/ijms21249739
Carow, B., Hauling, T., Qian, X., Kramnik, I., et al. (2019). Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. Nature Communications, 10, 1823. DOI: https://doi.org/10.1038/s41467-019-09816-4
Cerdá-Costa, N., & Gomis-Rüth F.X. (2014). Architecture and function of metallopeptidase catalytic domains. Protein Science, 23, 123-144. DOI: https://doi.org/10.1002/pro.2400
Chai, Q., Lu, Z., & Liu, C.H. (2020). Host defense mechanisms against Mycobacterium tuberculosis. Cellular and Molecular Life Sciences 77, 1859-878. DOI: https://doi.org/10.1007/s00018-019-03353-5
Chai, Q., Zhang, Y., & Liu, C.H. (2018). Mycobacterium tuberculosis: An Adaptable Pathogen Associated With Multiple Human Diseases. Frontiers in Cellular and Infection Microbiology, 8, 158. DOI: https://doi.org/10.3389/fcimb.2018.00158
Chandrasekaran, P., Saravanan, N., Bethunaickan, R., & Tripathy, S. (2017). Malnutrition: modulator of immune responses in tuberculosis. Frontiers in immunology, 8, 1316. DOI: https://doi.org/10.3389/fimmu.2017.01316
Cohen, S.B., Gern, BH, Delahaye, J.L., Adams, K.N., & Plumlee, C.R. (2018). Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate dissemination. Cell Host & Microbe, 24, 439-446. DOI: https://doi.org/10.1016/j.chom.2018.08.001
Cui, N., Hu, M, & Khalil, R.A. (2017). Biochemical and Biological Attributes of Matrix Metalloproteinases. Progress in Molecular Biology and Translational Science, 147, 1-13. DOI: https://doi.org/10.1016/bs.pmbts.2017.02.005
Dartois, V.A., & Rubin, E.J. (2022). Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nature Reviews Microbiology, 20, 685-701. DOI: https://doi.org/10.1038/s41579-022-00731-y
de Almeida, L.G.N., Thode, H., Eslambolchi, Y., Chopra, S., et al. (2022). Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacological Reviews, 74, 714-770. DOI: https://doi.org/10.1124/pharmrev.121.000349
de Waal A.M., Hiemstra, P.S., Ottenhoff, T.H., Joosten, S.A., & van der Does AM. (2022). Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax, 77, 408-416. DOI: https://doi.org/10.1136/thoraxjnl-2021-217997
Diller, R.B., & Tabor, A.J. (2022). The Role of the Extracellular Matrix (ECM) in wound Healing: A Review. Biomimetics, 7, 87. DOI: https://doi.org/10.3390/biomimetics7030087
dos Anjos, T.R., Castro, V.S., Filho, E.S.M., Suffys, P.N., et al. (2022). Genomic analysis of Mycobacterium tuberculosis variant bovis strains isolated from bovine in the state of Mato Grosso, Brazil. Frontiers in Veterinary Science, 9, 1006090. DOI: https://doi.org/10.3389/fvets.2022.1006090
Elkington, P., Shiomi, T., Breen, R., Nuttall, R.K., et al. (2011). MMP-1 drives immunopathology in human tuberculosis and transgenic mice. The Journal of clinical investigation, 121, 1827-1833. DOI: https://doi.org/10.1172/JCI45666
English, W.R., Holtz, B., Vogt, G., Knäuper, V., & Murphy, G. (2001). Characterization of the role of the “MT‐loop”: an eight‐amino acid insertion specific to progelatinase a (MMP2) activating membrane‐type matrix metalloproteinases. Journal of Biological Chemistry, 276, 42018‐42026. DOI: https://doi.org/10.1074/jbc.M107783200
Falconer, A.M.D., Chan, C.M., Gray, J., Nagashima, I., et al. (2019). Collagenolytic matrix metalloproteinases antagonize proteinase-activated receptor-2 activation, providing insights into extracellular matrix turnover. Journal of Biological Chemistry, 294, 10266-10277. DOI: https://doi.org/10.1074/jbc.RA119.006974
Furin, J., Cox, H., & Pai, M. (2019). Tuberculosis. Lancet, 393, 1642-1656. DOI: https://doi.org/10.1016/S0140-6736(19)30308-3
Gho, W.G., Choi, Y., Park, K., & Huh, J. (2018). Expression of collagenases (matrix metalloproteinase-1,8, 13) and tissue inhibitor of metalloproteinase-1 of retrodiscal tissue in temporomandibular joint disorder patients. Journal of The Korean Association of Oral and Maxillofacial Surgeons, 44, 120-127. DOI: https://doi.org/10.5125/jkaoms.2018.44.3.120
Gomis-Ruth, F.X., & Stöcker W. (2023). Structural and evolutionary insights into astacin metallopeptidases. Frontiers in Molecular Biosciences, 9, 1080836. DOI: https://doi.org/10.3389/fmolb.2022.1080836
Gonzalez-Avila, G., Sommer, B., Mendoza-Posada, D.A., Ramos, C., et al. (2019). Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Critical Reviews in Oncology/Hematology, 137, 57-83. DOI: https://doi.org/10.1016/j.critrevonc.2019.02.010
Gonzalez-Juarrero, M., Turner, O. C., Turner, J., Marietta, P., et al. (2001). Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis. Infection and Immunity, 69, 1722-1728. DOI: https://doi.org/10.1128/IAI.69.3.1722-1728.2001
Gothi, D., & Joshi, J.M. (2011). Resistant TB: Newer Drugs and Community Approach. Recent Patents on Anti-infective Drug Discovery, 6, 27-37. DOI: https://doi.org/10.2174/157489111794407859
Green, J.A., Tran, C.T., Farrar, J.J., Nguyen, M.T., et al. (2009). Dexamethasone, cerebrospinal fluid matrix metalloproteinase concentrations and clinical outcomes in tuberculous meningitis. PLoS One, 4, e7277. DOI: https://doi.org/10.1371/journal.pone.0007277
Guler, R., Ozturk, M., Sabeel, S., Motaung, B., et al. (2021). Targeting Molecular Inflammatory Pathways in Granuloma as Host-Directed Therapies for Tuberculosis. Frontiers in Immunology, 12, 733853. DOI: https://doi.org/10.3389/fimmu.2021.733853
Hannocks, M.J., Zhang, X., Gerwien, H., Chashchina, A., et al. (2019). The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biology, 75-76, 102-113. DOI: https://doi.org/10.1016/j.matbio.2017.11.007
Hao, W., Li, M., Zhang, Y., Zhang, C., & Xue, Y. (2019). Expressions of MMP-12, TIMP-4, and Neutrophil Elastase in PBMCs and Exhaled Breath Condensate in Patients with COPD and Their Relationships with Disease Severity and Acute Exacerbations. Journal of Immunology Research, 2019, 7142438. DOI: https://doi.org/10.1155/2019/7142438
He, L., Kang, Q., Chan, K.I, Zhang, Y., et al. (2023). The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Frontiers in Immunology, 13, 1093990. DOI: https://doi.org/10.3389/fimmu.2022.1093990
Heinz, A. (2020). Elastases and elastokines: elastin degradation and its significance in health and disease. Critical Reviews in Biochemistry and Molecular Biology, 55, 252-273. DOI: https://doi.org/10.1080/10409238.2020.1768208
Hoheisel, G., Sack, U., Hui D.S., Huse, K., et al. (2001). Occurrence of matrix metalloproteinases and tissue inhibitors of metalloproteinases in tuberculous pleuritis. Tuberculosis, 81, 203-209. DOI: https://doi.org/10.1054/tube.2000.0276
Jones-López, E., Acuῆa-Villaorduῆa, C., Ssebidandi, M., Gaeddert, M., et al. (2016). Cough Aerosols of Mycobacterium tuberculosis in the Prediction of Incident Tuberculosis Disease in Household Contacts. Clinical Infectious Diseases, 63, 10-20. DOI: https://doi.org/10.1093/cid/ciw199
Kayser, V., & Ramzan, I. (2021). Vaccines and vaccination: history and emerging issues. Human Vaccines & Immunotherapeutics, 17, 525-5268. DOI: https://doi.org/10.1080/21645515.2021.1977057
Khawbung, J.L., Nath, D., & Chakraborty, S. (2021). Drug resistant Tuberculosis: A review. Comparative Immunology, Microbiology and Infectious Diseases, 74, 101574. DOI: https://doi.org/10.1016/j.cimid.2020.101574
Kirwan D.E., Chong, D.L.W., & Friedland, J.S. (2021). Platelet Activation and the Immune Response to Tuberculosis. Frontiers in Immunology, 12, 631696. DOI: https://doi.org/10.3389/fimmu.2021.631696
Kumar, N.P., Moideen, K., Viswanathan, V., Shruthi, B.S., et al. (2018). Elevated levels of matrix metalloproteinases reflect severity and extent of disease in tuberculosis-diabetes co-morbidity and are predominantly reversed following standard antituberculosis or metformin treatment. BMC Infectious Diseases, 18, 345. DOI: https://doi.org/10.1186/s12879-018-3246-y
Kurz, S.G., Furin, J.J., & Bark, C.M. (2016). Drug Resistant Tuberculosis: Challenges and Progress. Infectious Disease Clinics of North America, 30, 509-522. DOI: https://doi.org/10.1016/j.idc.2016.02.010
LaFever, K.S., Wang, X., Page-McCaw, P., Bhave, G., & Page-McCaw, A. (2017). Both Drosophila matrix metalloproteinases have releases and membrane-tethered forms but have different substrates. Scientific Reports, 7, 44560. DOI: https://doi.org/10.1038/srep44560
Laronha, H., & Caldeira, J. (2020). Structure and Function of Human Matrix Metalloproteinases. Cells, 9, 1076. DOI: https://doi.org/10.3390/cells9051076
Lee, H.S., & Kim, W.J. (2022). The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. International Journal of Molecular Sciences, 23, 10546. DOI: https://doi.org/10.3390/ijms231810546
Lee, M.M., Yoon, B.J., Osiewicz, K., Preston, M., et al (2005). Tissue inhibitor of metalloproteinase 1 regulates resistance to infection. Infection and Immunity, 73, 661-665. DOI: https://doi.org/10.1128/IAI.73.1.661-665.2005
Ligi, D., Maniscalco, R., & Mannello, F. (2020). MMP-2 and MMP-9 in Human Peripheral Blood: Optimizing Gelatinase Calibrator for Degradome Research and Discovering a Novel Gelatinolytic Enzyme. Journal of Proteome Research, 19, 525-536. DOI: https://doi.org/10.1021/acs.jproteome.9b00261
Loffek, S., Schilling, O., & Franzke, C.W. (2011). Series “matrix metalloproteinases in lung health and disease”: Biological role of matrix metalloproteinases: A critical balance. The European Respiatory Journal, 38, 191–208. DOI: https://doi.org/10.1183/09031936.00146510
Lönnroth, K., Jaramillo, E., Williams, B.G., Dye, C., & Raviglione, M. (2009). Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Social Science & Medicine, 68, 2240–6. DOI: https://doi.org/10.1016/j.socscimed.2009.03.041
Lovey, A., Verma, S., Kaipilyawar, V., Ribeiro-Rodrigues, R., et al. (2022). Early alveolar macrophage response and IL-1R-dependent T cell priming determine transmissibility of Mycobacterium tuberculosis strains. Nature Communications, 13, 884. DOI: https://doi.org/10.1038/s41467-022-28506-2
Ma, B., Ran, R., Liao, H., & Zhang, H. (2021). The paradoxical role of matrix metalloproteinase-11 in cancer. Biomedicine & Pharmacotherapy, 141, 111899. DOI: https://doi.org/10.1016/j.biopha.2021.111899
Madzharova, E., Kastl, P., Sabino, F., & dem Keller, U.A. (2019). Post-Translational Modification-Dependent Activity of Matrix Metalloproteinases. International Journal of Molecular Sciences, 20, 3077. DOI: https://doi.org/10.3390/ijms20123077
Mukilan, M. (2023). Impact of Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli Oral Infusions on Cognitive Memory Decline in Mild Cognitive Impairment. Journal of Experimental Biology and Agricultural Sciences, 11, 581-592. DOI: https://doi.org/10.18006/2023.11(3).581.592
Murphy, G. (2011). Tissue inhibitors of metalloproteinases. Genome Biology, 12, 233. DOI: https://doi.org/10.1186/gb-2011-12-11-233
Murray, C.J.L., Ikuta, K.S., Sharara, F., Swetschinski, L., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399, 629-655. DOI: https://doi.org/10.1016/S0140-6736(21)02724-0
Narasimhan, P., Wood, J., MacIntryre, C.R., & Mathai, D. (2013). Risk factors for tuberculosis. Pulmonary Medicine, 2013, 828939. DOI: https://doi.org/10.1155/2013/828939
Nikolov, A., & Popovski, N. (2021). Role of Gelatinases MMP-2, and MMP-9 in Healthy and Complicated Pregancy and Their Future Potential as Preeclampsia Biomarkers. Diagnostics, 11, 480. DOI: https://doi.org/10.3390/diagnostics11030480
Ong, C.W., Elkington, P.T., Brilha, S., Ugarte-Gil, C., et al. (2015). Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis. PLoS Pathogens, 11, e1004917. DOI: https://doi.org/10.1371/journal.ppat.1004917
Palomino, J.C., & Martin, A. (2014). Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics, 3, 317-340. DOI: https://doi.org/10.3390/antibiotics3030317
Patterson, B., & Wood, R. (2019). Is cough really necessary for TB transmission. Tuberculosis, 117, 31-35. DOI: https://doi.org/10.1016/j.tube.2019.05.003
Peddireddy, V., Doddam, S.N., & Ahmed, N. (2017). Mycobacterial Dormancy Systems and Host Responses in Tuberculosis. Frontiers in Immunology, 8, 84. DOI: https://doi.org/10.3389/fimmu.2017.00084
Piskór, B.M., Przylipiak, A., Dabrowska, E., Niczyporuk, M., & Ławicki, S. (2020). Matrilysins and Stromelysins in Pathogenesis and Diagnostics of Cancers. Cancer Management and Research, 12, 10949-10694. DOI: https://doi.org/10.2147/CMAR.S235776
Poh, X.Y., Loh, F.K., Friedland, J.S., & Ong, C.W.M. (2021). Neutrophil-Mediated Immunopathology and Matrix Metalloproteinases in Central Nervous System – Tuberculosis. Frontiers in Immunology, 12, 788976. DOI: https://doi.org/10.3389/fimmu.2021.788976
Polena, H., Boudou, F., Tilleul, S., Dubois-Colas, N., et al. (2016). Mycobacterium tuberculosis exploits the formation of new blood vessels for its dissemination. Scientific Reports, 6, 33162. DOI: https://doi.org/10.1038/srep33162
Pollard, A.J., & Bijker, E.M. (2020). A guide to vaccinology: from basic principles to new developments. Nature Reviews Immunology, 21, 83-100. DOI: https://doi.org/10.1038/s41577-020-00479-7
Pontali, E., Raviglione, M.C., Migliori, G.B., et al. (2019). Regimens to treat multidrug-resistant tuberculosis:past, present and future perspectives. European Respiratory Review, 28, 190035. DOI: https://doi.org/10.1183/16000617.0035-2019
Price, N.M., Farrar, J., Tran, T.T., Nguyen, T.H., Tran TH, et al. (2001). Identification of a matrix-degrading phenotype in human tuberculosis in vitro and in vivo. Journal of Immunology, 166, 4223–4230. DOI: https://doi.org/10.4049/jimmunol.166.6.4223
Quintero-Fabián, S., Arreola, R., Becerril-Villanueva, E., Tores-Romero, J.C., et al. (2019). Role of Matrix Metalloproteinase in Angiogenesis and Cancer. Frontiers in Oncology, 9, 1370. DOI: https://doi.org/10.3389/fonc.2019.01370
Rand, L., Green, J.A., Saraiva, L., Friedland, J.S., & Elkington, P.T. (2009). Matrix metalloproteinase-1 is regulated in tuberculosis by a p38 MAPK-dependent, p-aminosalicylic acid-sensitive signaling cascade. Journal of Immunology, 182, 5865–5872. DOI: https://doi.org/10.4049/jimmunol.0801935
Raeeszadeh-Sarmazdeh, M., Coban, M., Mahajan, S., Hockla, A., et al. (2022). Engineering of tissue inhibitor of metalloproteinases TIMP-1 for fine discrimination between closely related stromelysins MMP-3 and MMP-10. Journal of Biological Chemistry, 298, 101654. DOI: https://doi.org/10.1016/j.jbc.2022.101654
Randall, P.J., Hsu, N., Quesniaux, V., Ryffel, B., & Jacobs, M. (2015). Mycobacterium tuberculosis infection of the ‘non-classical immune cell’. Immunology & Cell Biology, 93, 789-795. DOI: https://doi.org/10.1038/icb.2015.43
Ravimohan, S., Kornfield, H., Weissman, D., & Bisson, G.P. (2018). Tuberculosis and lung damage: from epidemiology to pathophysiology. European Respiratory Review, 27, 170077. DOI: https://doi.org/10.1183/16000617.0077-2017
Rohlwink, U.K., Walker, N.F., Ordonez, A.A., Li, Y.J., et al. (2019). Matrix Metalloproteinases in Pulmonary and Central Nervous System Tuberculosis-A Review. International Journal of Molecular Sciences, 20, 1350. DOI: https://doi.org/10.3390/ijms20061350
Rosenberg, G.A. (2002). Matrix metalloproteinases in neuroinflammation. Glia. 40, 130. DOI: https://doi.org/10.1002/glia.10165
Rosenblum, G., Meroueh, S., Toth, M., Fisher, J.F., et al. (2007). Molecular Structures and Dynamics of the Stepwise Activation Mechnaism of a Matrix Metalloproteinase Zymogen: Challenging the Cysteine Switch Dogma. Journal of the American Chemical Society, 129, 13566-13574. DOI: https://doi.org/10.1021/ja073941l
Sabir, N., Hussian, T., Mangi, M.H., Zhao, D., & Zhou, X. (2019). Matrix metalloproteinases: Expression, regulation and role in the immunopathology of tuberculosis. Cell Proliferation, 52, e12649. DOI: https://doi.org/10.1111/cpr.12649
Sakai, T., & Morimoto, Y. (2022). The History of Infectious Diseases and Medicine. Pathogens, 11, 1147. DOI: https://doi.org/10.3390/pathogens11101147
Sia, J.K., & Rengarajan, J. (2019). Immunology of Mycobacterium tuberculosis infections. Microbiology Spectrum, 7, 10.1128/microbiolspec.GPP3-0022-2018. DOI: https://doi.org/10.1128/9781683670131.ch64
Singh, B. (2023). Bedaquiline in Drug-Resistant Tuberculosis: A Mini-Review. Current Molecular Pharmacology, 16, 243-253. DOI: https://doi.org/10.2174/1874467215666220421130707
Singh, R., Dwivedi, S.P., Gaharwar, U.S., Meena, R., et al. (2020). Recent updates on drug resistance in Mycobacterium tuberculosis. Journal of Applied Microbiology, 128, 1547-1567. DOI: https://doi.org/10.1111/jam.14478
Singh, V., & Chibale, K. (2021). Strategies to Combat Multi-Drug Resistance in Tuberculosis. Accounts of Chemical Research, 54, 2361-2376. DOI: https://doi.org/10.1021/acs.accounts.0c00878
Smith, I. (2003). Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Viruence. Clinical Microbiology Reviews, 16, 463-496. DOI: https://doi.org/10.1128/CMR.16.3.463-496.2003
Stek, C., Allwood, B., Walker, N.F., Wilkinson, R.J., et al. (2018). The Immune Mechanisms of Lung Parenchymal Damage in Tuberculosis and the Role of Host-Directed Therapy. Frontiers in Microbiology, 9, 2603. DOI: https://doi.org/10.3389/fmicb.2018.02603
Stewart, R.J., Wortham, J., Parvez, F., Morris, S.B., et al. (2020). Tuberculosis Infection in Children. The Journal of nurse practitioners, 16, 673-678. DOI: https://doi.org/10.1016/j.nurpra.2020.06.027
Taylor, J.L., Hattle, J.M., Dreitz, S.A., Troudt, J.M., et al. (2006). Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection. Infection and Immunity, 74, 6135-44. DOI: https://doi.org/10.1128/IAI.02048-05
Tiberi, S., du Plessis, N., Walzl, G., Vjecha, M.J., et al. (2018). Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. The Lancet. Infectious diseases, 18, e183-e198. DOI: https://doi.org/10.1016/S1473-3099(18)30110-5
Tiwari, D., & Martineau, A.R. (2023). Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Seminars in Immunology, 65, 101672. DOI: https://doi.org/10.1016/j.smim.2022.101672
Ushtanit, A., Kulagina, E., Mikhailova, Y., Makarova, M., et al. (2022). Molecular Determinants of Ethionamide Resistance in Clinical Isolates of Mycobacterium tuberculosis. Antibiotics, 11, 133. DOI: https://doi.org/10.3390/antibiotics11020133
Vandenbroucke, R.E., & Libert, C. (2014). Is there new hope for therapeutic matrix metalloproteinase inhibition? Nature Reviews Drug Discovery, 13, 904-927. DOI: https://doi.org/10.1038/nrd4390
Vasava, M.S., Bhoi, M.J., Rathwa, S.K., Borad, M.A., et al. (2017). Drug development against tuberculosis: Past, present and future. The Indian Journal of Tuberculosis, 64, 252-275. DOI: https://doi.org/10.1016/j.ijtb.2017.03.002
Visse, R., & Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circulation Research, 92, 827–839. DOI: https://doi.org/10.1161/01.RES.0000070112.80711.3D
Wang, X., & Khalil, R.A. (2018). Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Advances in Pharmacology, 81, 241-330. DOI: https://doi.org/10.1016/bs.apha.2017.08.002
Yong, V.W., Power, C., Forsyth, P., & Edwards, D.R. (2001). Metalloproteinases in biology and pathology of the nervous system. Nature Reviews Neuroscience, 2, 502-511. DOI: https://doi.org/10.1038/35081571
Yusoof, K.A., Garcia, J.I., Schami, A., Garcia-Vilanova, A., et al. (2022). Tuberculosis Phenotypic and Genotypic Drug Susceptibility Testing and Immunodiagnostics: A Review. Frontiers in Immunology, 13, 870768. DOI: https://doi.org/10.3389/fimmu.2022.870768
Zapata-Acevedo, J.F., García-Pérez, V., Cabezas- Pérez, R., Losada-Barragán, M., et al. (2022). Laminin as a Biomarker of Blood-Brain Barrier Disruption under Neuroinflammation: A Systematic Review. International Journal of Molecular Sciences, 23, 6788. DOI: https://doi.org/10.3390/ijms23126788
Zhou, J., Lv, J., Carlson, C., Liu, H., et al. (2021). Trained immunity contributes to the prevention of Mycobacterium tuberculosis infection, a novel role of autophagy. Emerging Microbes & Infections, 10, 578-588. DOI: https://doi.org/10.1080/22221751.2021.1899771
Zhu, H., Fu, L., Wang, B., Chen, X., et al. (2021). Activity of Clofazimine and TBI-166 against Mycobacterium tuberculosis in
Different Adminstration Intervals in Mouse Tuberculosis Models. Antimicrobial Agents and Chemotherapy, 65, e02164-20.
Zipfel, P., Rochais, C., Baranger, K., Rivera, S., & Dallemagne, P. (2020). Matrix metalloproteinases as new targets in Alzheimer’s disease: Opportunities and Challenges. Journal of Medicinal Chemistry, 63, 10705-10725. DOI: https://doi.org/10.1021/acs.jmedchem.0c00352
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.