Production, characterization, and applications of a novel thermo-acidophilic L-asparaginase of Pseudomonas aeruginosa CSPS4
DOI:
https://doi.org/10.18006/2024.12(1).1.15Keywords:
L-asparaginase, Pseudomonas aeruginosa, Thermo-acidophilic enzyme, Acrylamide reduction, Food industryAbstract
In present investigation, a potential L-asparaginase-producing bacterial isolate, Pseudomonas aeruginosa CSPS4, has been explored to enhance the production and purification of the asparaginase enzyme. Production of L-asparaginase is enhanced using the 'one variable at a time approach (OVAT)'. In Placket Burman (PB) analysis, pH, sucrose, and temperature significantly influence L-asparaginase production. Thereafter, L-asparaginase enzyme was recovered from culture broth using fractional precipitation with chilled acetone. The partially purified L-asparaginase showed a molecular weight of ~35 KDa on SDS-PAGE. L-asparaginase was characterized as a thermo-acidophilic enzyme exhibiting optimum pH and temperature of 6.0 and 60 °C, respectively. These characteristics render this enzyme novel from other available asparaginases of Pseudomonas spp. L-asparaginase activity remained unaffected by different modulators. L-asparaginase of this investigation was successfully employed for acrylamide degradation in commercial fried potato chips, establishing its applicability in food industries.
References
Abhini, K.N., Rajan, A.B., Fathimathu, Z.K., & Sebastian, D. (2022). Response surface methodological optimization of L-asparaginase production from the medicinal plant endophyte Acinetobacter baumannii ZAS1. Journal of Genetic Engineering and Biotechnology, 20 (1), 1-13. doi: 10.1186/s43141-022-00309-4. DOI: https://doi.org/10.1186/s43141-022-00309-4
Ali, U., Naveed, M., Ullah, A., Ali, K., Shah, S.A., Fahad, S., & Mumtaz, A.S. (2016). L-asparaginase, as a critical component to combat acute lymphoblastic leukemia (ALL): A novel approach to target ALL. European Journal of Pharmacology, 77 (1), 199-210. doi.org/10.1016/j.ejphar.2015.12.023. DOI: https://doi.org/10.1016/j.ejphar.2015.12.023
Alrumman, S.A., Mostafa, Y.S., Al-Izran, K.A., Alfaifi, M.Y., Taha, T.H., Elbehairi, S.E. (2019). Production and anticancer activity of aL-Asparaginase from Bacillus licheniformis isolated from the red sea, Saudi Arabia. Scientific Reports, 6, 3756. doi.org/10.1038/s41598-019-40512-x. DOI: https://doi.org/10.1038/s41598-019-40512-x
Amany, B., Abd El–Aziz, Wesam, A., Hassanein Zakaria, A., Mattar., Rabab, A., & El-Didamony (2021). Production of chemotherapeutic agent L-asparaginase from gamma-Irradiated Pseudomonas aeruginosa WCHPA075019. Jordan journal of Biological Sciences, 14, 403-412. doi.org/10.54319/jjbs/140304. DOI: https://doi.org/10.54319/jjbs/140304
Badoei-Dalfard, A. (2015). Purification and characterization of l-asparaginase from Pseudomonas aeruginosa strain SN004: production optimization by statistical methods. Biocatalysis and Agricultural Biotechnology, 4, 388-397. doi.org/10.1016/ j.bcab.2015.06.007. DOI: https://doi.org/10.1016/j.bcab.2015.06.007
Batool, T., Makky E.A., Jalal, M., & Yusoff, M.M. (2016). A comprehensive review on L-asparaginase and its applications. Applied biochemistry and biotechnology, 178, 900-923. doi:10.1007/s12010-015-1917-3. DOI: https://doi.org/10.1007/s12010-015-1917-3
Bhagat, J., Kaur, A., & Chadha, B.S. (2016). Single step purification of asparaginase from endophytic bacteria Pseudomonas oryzihabitans exhibiting high potential to reduce acrylamide in processed potato chips. Food and Bioproducts Processing, 99, 222-230. doi.org/10.1016/j.fbp.2016.05.010. DOI: https://doi.org/10.1016/j.fbp.2016.05.010
Brumano, L.P., da Silva, F.V.S., Costa-Silva, T.A., Apolinário, A.C., Santos J.H.P.M., et al. (2019). Development of L-Asparaginase Biobetters: current research status and review of the desirable quality profiles. Frontiers in Bioengineering and Biotechnology, 6, 212. doi.org/10.3389/fbioe.2018.00212. DOI: https://doi.org/10.3389/fbioe.2018.00212
Brumano, L.P., Moguel, I.S., Yamakawa, C.K., Pessoa, A.Jr., & Mussatto, S.I. (2022). Selection and optimization of medium components for the efficient production of L-asparaginase by Leucosporidium scottii L115—A Psychrotolerant Yeast. Fermentation, 8, 398. doi.org/10.3390/fermentation8080398. DOI: https://doi.org/10.3390/fermentation8080398
Dipali, P., & Ajit, P. (2012). Characterization of amylase producing bacterial isolates. Pharmaceutical Life Science, 1, 42–47. doi.org/10.1155/2021/5592885.
Doriya, K., & Kumar, D.S. (2016) Isolation and screening of L-asparaginase free of glutaminase and urease from fungal sp. 3 Biotech, 6, 239. DOI: https://doi.org/10.1007/s13205-016-0544-1
Duval, M., Suciu, S., Ferster, A., Rialland, X., Nelken, B., et al. (2002). Comparison of Escherichia coli-asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organization for Research and Treatment of Cancer-Children's Leukemia Group phase 3 trial. Blood, 99, 2734–2739. doi.org/10.1182/blood. V99.8.2734. DOI: https://doi.org/10.1182/blood.V99.8.2734
El-Bessoumy, A.A., Sarhan, M., & Mansour, J. (2004). Production, isolation, and purification of L-asparaginase from Pseudomonas aeruginosa 50071 using solid-state fermentation. Korean Society for Biochemistry and Molecular Biology. BMB Reports, 37, 387-393. doi.org/10.5483/BMBRep DOI: https://doi.org/10.5483/BMBRep.2004.37.4.387
El-Naggar, N.E.A., Moawad, H., El-Shweihy, N.M. et al (2019). Process development for scale-up production of a therapeutic L-asparaginase by Streptomyces brollosae NEAE-115 from shake flasks to bioreactor. Scientific Reports, 9, 13571. DOI: https://doi.org/10.1038/s41598-019-49709-6
El-Naggar, Nel-A., Moawad, H., El-Shweihy, N.M., & El-Ewasy, S.M. (2015). Optimization of culture conditions for production of the anti-leukemic glutaminase free L-asparaginase by newly isolated Streptomyces olivaceus NEAE-119 using response surface methodology. BioMed Research International, 2015 (17). doi.org/10.1155/2015/627031. DOI: https://doi.org/10.1155/2015/627031
El-Sharkawy, A.S., Farag, A.M., Embaby, A.M., Saeed H., & El-Shenawy, M. (2016) Cloning, expression and characterization of Pseudomonas aeruginosa EGYII L-Asparaginase from Pseudomonas aeruginosa strain EGYII DSM 101801 in E. coli BL21(DE3) pLysS. Journal of Molecular Catalysis B: Enzymatic, 132, 16-23. doi.org/10.1016/j.molcatb.2016.06.011. DOI: https://doi.org/10.1016/j.molcatb.2016.06.011
Fatima, N., Khan, M.M., & Khan, I.A. (2019). L-asparaginase produced from soil isolates of Pseudomonas aeruginosa shows potent anticancer activity on HeLa cells. Saudi Journal of Biological Sciences, 26, 1146-1153. doi.org/10.1016/j.sjbs.2019.05.001. DOI: https://doi.org/10.1016/j.sjbs.2019.05.001
Goswami, R., Hegde, K., & Veeranki, V.D. (2015). Production and characterization of novel glutaminase free recombinant L-asparaginase II of Erwinia carotovora subsp. atroseptica SCRI 1043 in E. coli BL21 (DE3) British Microbiology Research Journal, 6, 95-112. DOI: 10.9734/BMRJ/2015/13867 DOI: https://doi.org/10.9734/BMRJ/2015/13867
Husain, I., Sharma, A., Kumar, S., & Malik, F. (2016). Purification and characterization of glutaminase free asparaginase from Enterobacter cloacae: in-vitro evaluation of cytotoxic potential against human Myeloid Leukemia HL-60 cells. PLoS One, 1811, e0148877. doi.org/10.137/journal.pone.0148877. DOI: https://doi.org/10.1371/journal.pone.0148877
Jia, R., Wan, X., Geng, X., Xue, D., Xie, Z., & Chen, C. (2021). Microbial L-asparaginase for application in acrylamide mitigation from food: Current research status and future perspectives. Microorganisms, 9, 1659. DOI: https://doi.org/10.3390/microorganisms9081659
Joshi, S., & Satyanarayana, T. (2015). Bioprocess for efficient production of recombinant Pichia anomala phytase and its applicability in dephytinizing chick feed and whole wheat flat Indian breads. Journal of Industrial Microbiology and Biotechnology, 42, 1389-1400 doi.org/10.1007/s10295-015-1670-1. DOI: https://doi.org/10.1007/s10295-015-1670-1
Kamble, K.D., Bidwe, P.R., Muley, V.Y., Kamble, L.H., Bhadange. D.G., & Musaddiq, M. (2012). Characterization of l-asparaginase producing bacteria from water, farm, and saline soil. Bioscience discovery, 3, 116-119.
Kataria, M., Kaur, N., Narula, R., Kumar, K., Kataria. S., & Verma, N. (2015). L-Asparaginase from novel source: Solanum nigrum and development of asparagine biosensor. The Pharma Innovation Journal, 4, 81.
Kruger, N.J. (1994). Detection of polypeptides on immunoblots using secondary antibodies or protein A. Methods in Molecular Biology, 32, 17–24. DOI: https://doi.org/10.1385/0-89603-268-X:215
Kukurova, K., Morales, F.J., Bednáriková, A., & Ciesarová, Z. (2009). Effect of l‐asparaginase on acrylamide mitigation in a fried‐dough pastry model. Molecular Nutrition & Food Research, 53, 1532-1539. doi: 10.1002/mnfr.200800600. DOI: https://doi.org/10.1002/mnfr.200800600
Kumar, S., Ashish, P.A., Venkata, D.V., & Pakshirajan, K. (2017). Kinetics of growth on dual substrates, production of novel glutaminase-free L-asparaginase and substrates utilization by Pectobacterium carotovorum MTCC 1428 in a batch bioreactor. Korean Journal of Chemical Engineering, 34, 118-126. doi: 10.1007/s11814-016-0216-1. DOI: https://doi.org/10.1007/s11814-016-0216-1
Kumar, S., Darnal, S., Patial, V., Kumar, V., Kumar, S., & Singh, D. (2022). Molecular cloning, characterization, and in-silico analysis of L-asparaginase from Himalayan Pseudomonas sp. PCH44. 3 Biotech, 12, 162. doi.org/10.1007/s13205-022-03224-0 DOI: https://doi.org/10.1007/s13205-022-03224-0
Kumar, V., Kumar, R., Sharma, S., Shah, A., Chaturvedi, C.P., & Verma, D. (2024) Cloning, expression, and, characterization of a novel thermo-acidophilic l-asparaginase of Pseudomonas aeruginosa CSPS4. 3 Biotech 14, 54. doi.org/10.1007/s13205-024-03916-9. DOI: https://doi.org/10.1007/s13205-024-03916-9
Li, X., Zhang, X., Xu, S., Xu, M., Yang, T., et al. (2019). Insight into the thermostability of thermophilic L-asparaginase and non-thermophilic L-asparaginase II through bioinformatics and structural analysis. Applied microbiology and biotechnology, 103, 7055-7070. doi.org/10.1007/s00253-019-09967-w. DOI: https://doi.org/10.1007/s00253-019-09967-w
Luo, M., Brooks, M., & Wicha, M.S. (2018). Asparagine and Glutamine: Co-conspirators Fueling Metastasis. Cell Metabolism, 27, 947-949. doi: 10.1016/j.cmet.2018.04.012. DOI: https://doi.org/10.1016/j.cmet.2018.04.012
Mahajan, R.V., Kumar, V., Rajendran, V., Saran, S., Ghosh, P.C., & Saxena, R.K. (2014). Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from Bacillus licheniformis: in vitro evaluation of anti-cancerous properties. PLoS One, 6, 99037. DOI: https://doi.org/10.1371/journal.pone.0099037
Mahajan, R.V., Saran, S., Kameswaran, K., Kumar, V., & Saxena, R.K. (2012). Efficient production of L-asparaginase from Bacillus licheniformis with low-glutaminase activity: optimization, scale up and acrylamide degradation studies. Bioresource Technology, 125, 11-6. doi.org/10.1016/j.biortech.2012.08.086. DOI: https://doi.org/10.1016/j.biortech.2012.08.086
Managamuri, U., Vijayalakshmi, M., Ganduri, VSRK., Babu, S., & Poda, S. (2017). Optimization of culture conditions by response surface methodology and unstructured kinetic modeling for L-asparaginase production by Pseudonocardia endophytica VUK-10. Journal of Applied Pharmaceutical Science, 7, 42–50. doi: 10.7324/JAPS.2017. 70106. DOI: https://doi.org/10.7324/JAPS.2017.70106
Muzuni, Aprilyani, R., Ardiansyah, S., Farij, M., & Gultom, M.T. (2023). Characterization of the type 2 l-asparaginase gene in thermo-halophilic bacterial from Wawolesea hot springs, Southeast Sulawesi, Indonesia. Pakistan Journal of Biological Sciences 26, 392-402. doi: 10.3923/pjbs.2023.392.402. DOI: https://doi.org/10.3923/pjbs.2023.392.402
Osama, S., El-Sherei, M.M., Al-Mahdy, D.A., Bishr, M., Salama, O., & Raafat, M.M (2023). Optimization and characterization of antileukemic L-asparaginase produced by Fusarium solani endophyte. AMB Express, 13, 96. doi: 10.1186/s13568-023-01602-2 DOI: https://doi.org/10.1186/s13568-023-01602-2
Pavlova, N.N., Hui, S., Ghergurovich, J.M., Fan, J., Intlekofer, A.M., et al. (2018). As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metabolism, 6, 428-438.e5. doi.org/10.1016/j.cmet.2017.12.006. DOI: https://doi.org/10.1016/j.cmet.2017.12.006
Qeshmi, I.F., Homaei, A., Khajeh, K., Kamrani, E., & Fernandes, P. (2022). Production of a Novel Marine Pseudomonas aeruginosa recombinant L-asparaginase: Insight on the structure and biochemical characterization. Marine Biotechnology, 24, 599-613. doi.org/10.1007/s10126-022-10129-9. DOI: https://doi.org/10.1007/s10126-022-10129-9
Sharma, A., & Satyanarayana, T. (2011). Optimization of medium components and cultural variables for enhanced production of acidic high maltose-forming and Ca2+-independent α-amylase by Bacillus acidicola. Journal of Biosciences Bioengineering, 111 (5), 550-3. DOI: https://doi.org/10.1016/j.jbiosc.2011.01.004
Shirfrin, S., Parrott, C.L., & Luborsky, S.W. (1974). Substrate binding and inter-subunit interactions in L-asparaginase. Journal of Biological Chemistry, 249, 1335–1340. DOI: https://doi.org/10.1016/S0021-9258(19)42886-X
Shrivastava, A., Khan, A.A., Khurshid, M., Kalam, M.A., Jain, S.K., & Singhal, P.K. (2016). Recent developments in L-asparaginase discovery and its potential as anticancer agent. Critical reviews in oncology/hematology, 100, 1-10. doi: 10.1016/j.critrevonc.2015.01.002. DOI: https://doi.org/10.1016/j.critrevonc.2015.01.002
Simas, R.G., Krebs Kleingesinds, E., Pessoa Junior, A., & Long, P.F. (2021). An improved method for simple and accurate colorimetric determination of l-asparaginase Enzyme Activity Using Nessler's Reagent. Journal of Chemical Technology & Biotechnology, 96, 1326–1332. DOI: https://doi.org/10.1002/jctb.6651
Simpson, D.M., & Beynon, R.J. (2010). Acetone precipitation of proteins and the modification of peptides. Journal of Proteome Research, 9, 444-450. doi: 10.1021/pr900806x. DOI: https://doi.org/10.1021/pr900806x
Stadler, R.H., Blank. I., Varga, N., Robert F, Hau J, et al. (2002). Acrylamide from Maillard reaction products. Nature, 3,449-50. doi: 10.1038/419449a. DOI: https://doi.org/10.1038/419449a
Talluri, P.V., Lanka, S.S., Rajagopal Saladi, V., & Avicenna, J. (2019). Statistical Optimization of Process Parameters by Central Composite Design (CCD) for an Enhanced Production of L-asparaginase by Myroides gitamensis BSH-3, a Novel Species. Avicenna Journal of Medical Biotechnology, 11, 59-66.
Tripathi, N., & Sapra, A. (2023) Gram Staining. In: Stat-Pearls [Internet]. Treasure Island (FL): StatPearls Publishing.
Verma, D., & Satyanarayana, T. (2011). An improved protocol for DNA extraction from alkaline soil and sediment samples for constructing metagenomic libraries. Applied Biochemistry and Biotechnology, 165, 454-64. doi: 10.1007/s12010-011-9264-5. DOI: https://doi.org/10.1007/s12010-011-9264-5
Vimal, A., & Kumar, A., (2022) L-asparaginase: need for an expedition from an enzymatic molecule to antimicrobial drug. International Journal of Peptide Research and Therapeutics, 28, 9. https://doi.org/10.1007/s10989-021-10312-x. DOI: https://doi.org/10.1007/s10989-021-10312-x
Williams, S.T., Sharpe, M.E., & Holt, J.G. (1989). Bergey's Manual of Systematic Bacteriology. 2nd. Baltimore, MD, USA: Springer Science+Business Media, LLC.
Xu, F., Oruna-Concha, M.J., & Elmore, J.S. (2016).The use of asparaginase to reduce acrylamide levels in cooked food. Food chemistry, 105, 163–171. doi: 10.1016/j.foodchem.2016.04.105. DOI: https://doi.org/10.1016/j.foodchem.2016.04.105
Yahya, S., Jahagir, S., Shaukat, S., Sohail, M., & Khan, S. (2016). Production optimization by using Plackett-Burman design and
partial characterization of amylase from Aspergillus tubingensis SY1. Pakistan Journal of Botany, 48,, 2557-2561.
Yan, Y., Kuramae, E.E., Klinkhamer, P.G., & van Veen, J.A. (2015). Revisiting the dilution procedure used to manipulate microbial biodiversity in terrestrial systems. Applied Environmental Microbiology, 81, 4246-52. DOI: https://doi.org/10.1128/AEM.00958-15
Zhou, Y., Jiao, L., Shen, J., Chi, H., Lu, Z., et al. (2022). Enhancing the Catalytic Activity of Type II L-Asparaginase from Bacillus licheniformis through Semi-Rational Design. International Journal of Molecular Sciences, 23, 9663. doi.org/10.3390/ijms23179663. DOI: https://doi.org/10.3390/ijms23179663
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.