Wound Healing and Skin Regeneration: Present Status and Future Directions

Authors

DOI:

https://doi.org/10.18006/2023.11(6).871.883

Keywords:

Stem cell therapy, Wound healing, Regenerative medicine, Mesenchymal stem cells, Tissue engineering

Abstract

Wound healing and skin regeneration involve intricate interactions between various cellular, molecular, and biochemical factors. This narrative review aims to provide an in-depth analysis of the present status of therapeutic strategies for wound healing and skin regeneration. The literature review was performed using the Google Scholar search engine with the help of relevant keywords. Selected publications were used to synthesize different sections of the narrative review. The quest for innovative therapeutic approaches to accelerate wound healing and enhance skin regeneration has led to remarkable advancements in recent years. The landscape of therapeutic approaches for wound healing and skin regeneration is evolving rapidly, driven by groundbreaking discoveries and interdisciplinary collaborations. From advanced wound dressings and growth factor therapies to stem cell-based interventions and gene editing techniques, the arsenal of tools at our disposal continues to expand. As researchers continue to unravel the intricate mechanisms underlying wound repair and regeneration, the potential for transformative therapies to revolutionize patient care remains immense. Through a combination of innovative technologies, personalized approaches, ethical considerations, and global accessibility, the future of wound healing holds promise for improving the lives of countless individuals worldwide. Despite significant advancements, several knowledge gaps persist in the field of wound healing and skin regeneration. Further elucidation of cellular and molecular mechanisms governing wound repair, inflammation resolution, and scar formation is warranted. Exploring the crosstalk between wound healing and the microbiome and the influence of ageing and systemic diseases will unravel new therapeutic targets and strategies. As researchers delve deeper into understanding the intricate mechanisms underlying wound repair, the development of novel therapies and their clinical translation become increasingly promising. With a multidisciplinary approach and ongoing advancements in technology, biology, and medicine, the future holds great potential for transforming the field of wound healing and skin regeneration.

Author Biography

Laith Abualigah, Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, Al al-Bayt University, Mafraq 25113, Jordan

Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan

MEU Research Unit, Middle East University, Amman 11831, Jordan

Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon

School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia

School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia

Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan

Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia

References

Abiraman, S., Varma, H. K., Umashankar, P. R., & John, A. (2002). Fibrin glue as an osteoinductive protein in a mouse model. Biomaterials, 23(14), 3023-3031. DOI: https://doi.org/10.1016/S0142-9612(02)00064-9

Amitha, B. S., Pawde, A.M., Sharun, K., Kalaiselvan, E., Shivaramu, S., et al. (2023). Haemato-biochemical alterations associated with the use of eggshell membrane as a dressing material for full-thickness wounds in a rabbit model. Exploratory Animal and Medical Research, 13(1), 117-121. https://doi.org/10.52635/eamr/13.1.117-121 DOI: https://doi.org/10.52635/eamr/13.1.117-121

Anderson, D. (1996). Wound management in small animal practice. In Practice, 18(3), 115-128. DOI: https://doi.org/10.1136/inpract.18.3.115

Banu, S. A., Pawde, A. M., Sharun, K., Kalaiselvan, E., Shivaramu, S., et al. (2023). Evaluation of bone marrow-derived mesenchymal stem cells with eggshell membrane for full-thickness wound healing in a rabbit model. Cell and Tissue Banking. https://doi.org/10.1007/s10561-023-10105-0 DOI: https://doi.org/10.1007/s10561-023-10105-0

Bist, D., Pawde, A. M., Amarpal, Kinjavdekar, P., Mukherjee, R., et al. (2021). Evaluation of canine bone marrow-derived mesenchymal stem cells for experimental full-thickness cutaneous wounds in a diabetic rat model. Expert Opinion on Biological Therapy, 21(12), 1655-1664. https://doi.org/10.1080/14712598.2022.1990260 DOI: https://doi.org/10.1080/14712598.2022.1990260

Boateng, J. S., Matthews, K. H., Stevens, H. N., & Eccleston, G. M. (2008). Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences, 97(8), 2892-2923. DOI: https://doi.org/10.1002/jps.21210

Bouwstra, J. A., & Honeywell-Nguyen, P. L. (2002). Skin structure and mode of action of vesicles. Advanced Drug Delivery Reviews, 54, S41-S55. DOI: https://doi.org/10.1016/S0169-409X(02)00114-X

Boyapati, L., & Wang, H. L. (2007). The role of stress in periodontal disease and wound healing. Periodontology, 44(1), 195-210. DOI: https://doi.org/10.1111/j.1600-0757.2007.00211.x

Brown, C. D., & Zitelli, J. A. (1993). A review of topical agents for wounds and methods of wounding: guidelines for wound management. The Journal of Dermatologic Surgery and Oncology, 19(8), 732-737. DOI: https://doi.org/10.1111/j.1524-4725.1993.tb00417.x

Cañedo-Dorantes, L., & Cañedo-Ayala, M. (2019). Skin acute wound healing: a comprehensive review. International Journal of Inflammation, 2019,1-16. DOI: https://doi.org/10.1155/2019/3706315

Canonico, S. (2003). The use of human fibrin glue in the surgical operations. Acta Bio-medica: Atenei Parmensis, 74, 21-25.

Carlson, M. A., & Longaker, M. T. (2004). The fibroblast populated collagen matrix as a model of wound healing: a review of the evidence. Wound Repair and Regeneration, 12(2), 134-147. DOI: https://doi.org/10.1111/j.1067-1927.2004.012208.x

Cialdai, F., Risaliti, C., & Monici, M. (2022). Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Frontiers in Bioengineering and Biotechnology, 10, 958381. https://doi.org/10.3389/fbioe.2022.958381 DOI: https://doi.org/10.3389/fbioe.2022.958381

Clark, R. A. (2003). Fibrin glue for wound repair: facts and fancy. Thrombosis and Haemostasis, 90(12), 1003-1006 DOI: https://doi.org/10.1160/TH03-08-0526

Clark, R. A., Ghosh, K., & Tonnesen, M. G. (2007). Tissue engineering for cutaneous wounds. The Journal of Investigative Dermatology, 127(5), 1018-1029. https://doi.org/10.1038/ sj.jid.5700715 DOI: https://doi.org/10.1038/sj.jid.5700715

Davidson, J. M. (1998). Animal models for wound repair. Archives of Dermatological Research, 290(1), S1-S11. DOI: https://doi.org/10.1007/PL00007448

Falanga, V. (2005). Wound healing and its impairment in the diabetic foot. The Lancet, 366(9498), 1736-1743. DOI: https://doi.org/10.1016/S0140-6736(05)67700-8

Franz, M. G. (2007). Optimizing healing of the acute wound by minimizing complications. Current Problems in Surgery, 44, 679-766. DOI: https://doi.org/10.1067/j.cpsurg.2007.07.001

Frykberg, R.G., & Banks, J. (2015). Challenges in the Treatment of Chronic Wounds. Advances in Wound Care, 4(9), 560-582. https://doi.org/10.1089/wound.2015.0635 DOI: https://doi.org/10.1089/wound.2015.0635

Gilliver, S. C., Ashworth, J. J., & Ashcroft, G. S. (2007). The hormonal regulation of cutaneous wound healing. Clinics in Dermatology, 25(1), 56-62. DOI: https://doi.org/10.1016/j.clindermatol.2006.09.012

Gonzalez, A. C., Costa, T. F., Andrade, Z. A., & Medrado, A. R. (2016). Wound healing - A literature review. Anais brasileiros de dermatologia, 91(5), 614-620. https://doi.org/10.1590/abd1806-4841.20164741 DOI: https://doi.org/10.1590/abd1806-4841.20164741

Gosain, A., & DiPietro, L. A. (2004). Ageingand wound healing. World Journal of Surgery, 28(3), 321–326. https://doi.org/10.1007/s00268-003-7397-6 DOI: https://doi.org/10.1007/s00268-003-7397-6

Guha Ray, P., Pal, P., Srivas, P. K., Basak, P., Roy, S., & Dhara, S. (2018). Surface modification of eggshell membrane with electrospun chitosan/polycaprolactone nanofibers for enhanced dermal wound healing. ACS Applied Bio Materials, 1(4), 985-998. DOI: https://doi.org/10.1021/acsabm.8b00169

Guo, S. A., & DiPietro, L. A. (2010). Factors affecting wound healing. Journal of Dental Research, 89(3), 219-229. DOI: https://doi.org/10.1177/0022034509359125

Herskovitz, I., Macquhae, F., Fox, J. D., & Kirsner, R. S. (2016). Skin movement, wound repair and development of engineered skin. Experimental Dermatology, 25(2), 99-100. https://doi.org/10.1111/exd.12916 DOI: https://doi.org/10.1111/exd.12916

Kalaydina, R. V., Bajwa, K., Qorri, B., Decarlo, A., & Szewczuk, M. R. (2018). Recent advances in "smart" delivery systems for extended drug release in cancer therapy. International Journal of Nanomedicine, 13, 4727–4745. https://doi.org/10.2147/IJN.S168053 DOI: https://doi.org/10.2147/IJN.S168053

Kolimi, P., Narala, S., Nyavanandi, D., Youssef, A. A. A., & Dudhipala, N. (2022). Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells, 11(15), 2439. https://doi.org/10.3390/cells11152439 DOI: https://doi.org/10.3390/cells11152439

Kucharzewski, M., Rojczyk, E., Wilemska-Kucharzewska, K., Wilk, R., Hudecki, J., & Los, M. J. (2019). Novel trends in application of stem cells in skin wound healing. European Journal of Pharmacology, 843, 307-315. DOI: https://doi.org/10.1016/j.ejphar.2018.12.012

Kwon, Y. B., Kim, H. W., Roh, D. H., Yoon, S. Y., Baek, et al. (2006). Topical application of epidermal growth factor accelerates wound healing by myofibroblast proliferation and collagen synthesis in rat. Journal of Veterinary Science, 7(2), 105-109. https://doi.org/10.4142/jvs.2006.7.2.105 DOI: https://doi.org/10.4142/jvs.2006.7.2.105

Li, J., Chen, J., & Kirsner, R. (2007). Pathophysiology of acute wound healing. Clinics in Dermatology, 25(1), 9-18. DOI: https://doi.org/10.1016/j.clindermatol.2006.09.007

Liang, C., Liao, L., & Tian, W. (2023). Advances Focusing on the Application of Decellularized Extracellular Matrix in Periodontal Regeneration. Biomolecules, 13(4), 673. https://doi.org/10.3390/ biom13040673 DOI: https://doi.org/10.3390/biom13040673

Lindblad, W. J. (2008). Considerations for selecting the correct animal model for dermal wound-healing studies. Journal of Biomaterials Science, Polymer Edition, 19(8), 1087-1096. DOI: https://doi.org/10.1163/156856208784909390

Liptak, J. M. (1997). An overview of the topical management of wounds. Australian Veterinary Journal, 75(6), 408-413. DOI: https://doi.org/10.1111/j.1751-0813.1997.tb14342.x

Masson Meyers, D. S., Andrade, T. A., Caetano, G. F., Guimaraes, F. R., Leite, M. N., Leite, S. N, & Frade, M. A. C. (2020). Experimental models and methods for cutaneous wound healing assessment. International Journal of Experimental Pathology, 101(1-2), 21-37. DOI: https://doi.org/10.1111/iep.12346

Mehanna, R. A., Nabil, I., Attia, N., Bary, A. A., Razek, K. A., Ahmed, T. A, & Elsayed, F. (2015). The effect of bone marrow-derived mesenchymal stem cells and their conditioned media topically delivered in fibrin glue on chronic wound healing in rats. BioMed Research International, 2015, 846062. DOI: https://doi.org/10.1155/2015/846062

Menke, N. B., Ward, K. R., Witten, T. M., Bonchev, D. G., & Diegelmann, R. F. (2007). Impaired wound healing. Clinics in Dermatology, 25(1), 19-25. DOI: https://doi.org/10.1016/j.clindermatol.2006.12.005

Mittal, A., Teotia, M., Soni, R. K., & Mittal, J. (2016). Applications of egg shell and egg shell membrane as adsorbents: a review. Journal of Molecular Liquids, 223: 376-387. DOI: https://doi.org/10.1016/j.molliq.2016.08.065

Mogoşanu, G. D., & Grumezescu, A. M. (2014). Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics, 463(2): 127-136. DOI: https://doi.org/10.1016/j.ijpharm.2013.12.015

Mooney, E., Loh, C., Pu, L.L., & ASPS/PSEF Technology Assessment Committee (2009). The use of fibrin glue in plastic surgery. Plastic and Reconstructive Surgery, 124(3), 989-992. DOI: https://doi.org/10.1097/PRS.0b013e3181b039a3

Negut, I., Dorcioman, G., & Grumezescu, V. (2020). Scaffolds for Wound Healing Applications. Polymers, 12(9), 2010. https://doi.org/10.3390/polym12092010 DOI: https://doi.org/10.3390/polym12092010

Ojeh, N., Pastar, I., Tomic-Canic, M., & Stojadinovic, O. (2015). Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications. International Journal of Molecular Sciences, 16(10), 25476-25501. https://doi.org/10.3390/ijms161025476 DOI: https://doi.org/10.3390/ijms161025476

Onyekwelu, I., Yakkanti, R., Protzer, L., Pinkston, C. M., Tucker, C., & Seligson, D. (2017). Surgical Wound Classification and Surgical Site Infections in the Orthopaedic Patient. Journal of the American Academy of Orthopaedic Surgeons. Global Research & Reviews, 1(3), e022. https://doi.org/10.5435/JAAOSGlobal-D-17-00022 DOI: https://doi.org/10.5435/JAAOSGlobal-D-17-00022

Pang, Q., Yang, F., Jiang, Z., Wu, K., Hou, R., & Zhu, Y. (2023). Smart wound dressing for advanced wound management: Real-time monitoring and on-demand treatment. Materials & Design, 111917. DOI: https://doi.org/10.1016/j.matdes.2023.111917

Papier, A., Peres, M. R., Bobrow, M., & Bhatia, A. (2000). The digital imaging system and dermatology. International Journal of Dermatology, 39(8), 561-575. DOI: https://doi.org/10.1046/j.1365-4362.2000.00033.x

Parnell, L. K., & Volk, S. W. (2019). The Evolution of Animal Models in Wound Healing Research: 1993–2017. Advances in Wound Care, 8(12), 692-702. DOI: https://doi.org/10.1089/wound.2019.1098

Peer, B. A., Bhat, A. R., Shabir, U., Bharti, M. K., Bhat, I. A., et al. (2022). Comparative evaluation of fracture healing potential of differentiated and undifferentiated guinea pig and canine bone marrow-derived mesenchymal stem cells in a guinea pig model. Tissue and Cell, 76, 101768. https://doi.org/10.1016/ j.tice.2022.101768 DOI: https://doi.org/10.1016/j.tice.2022.101768

Percival, N. J. (2002). Classification of wounds and their management. Surgery (Oxford), 20(5), 114-117. DOI: https://doi.org/10.1383/surg.20.5.114.14626

Qin, J., Chen, F., Wu, P., & Sun, G. (2022). Recent Advances in Bioengineered Scaffolds for Cutaneous Wound Healing. Frontiers in Bioengineering and Biotechnology, 10, 841583. https://doi.org/10.3389/fbioe.2022.841583 DOI: https://doi.org/10.3389/fbioe.2022.841583

Raica, M., & Cimpean, A. M. (2010). Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy. Pharmaceuticals, 3(3), 572–599. https://doi.org/10.3390/ph3030572 DOI: https://doi.org/10.3390/ph3030572

Robson, M. C., Steed, D. L., & Franz, M. G. (2001). Wound healing: biologic features and approaches to maximize healing trajectories. Current Problems in Surgery, 38(2), 72–140. https://doi.org/10.1067/msg.2001.111167 DOI: https://doi.org/10.1067/msg.2001.111167

Rodrigues, M., Kosaric, N., Bonham, C. A., & Gurtner, G. C. (2019). Wound healing: a cellular perspective. Physiological Reviews, 99(1), 665-706. DOI: https://doi.org/10.1152/physrev.00067.2017

Romanelli, M., Miteva, M., Romanelli, P., Barbanera, S., & Dini, V. (2013). Use of diagnostics in wound management. Current Opinion in Supportive and Palliative Care, 7(1), 106-110. DOI: https://doi.org/10.1097/SPC.0b013e32835dc0fc

Ruff, K. J., DeVore, D. P., Leu, M. D., & Robinson, M. A. (2009). Eggshell membrane: a possible new natural therapeutic for joint and connective tissue disorders. Results from two open-label human clinical studies. Clinical Interventions in Aging, 4, 235–240. DOI: https://doi.org/10.2147/CIA.S5797

Sah, M. K., & Rath, S. N. (2016). Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications. Materials Science and Engineering: C, 67, 807-821. DOI: https://doi.org/10.1016/j.msec.2016.05.005

Sharun, K., Jambagi, K., Kumar, R., Gugjoo, M. B., Pawde, A. M et al. (2022). Clinical applications of adipose-derived stromal vascular fraction in veterinary practice. The Veterinary Quarterly, 42(1), 151–166. https://doi.org/10.1080/01652176.2022.2102688 DOI: https://doi.org/10.1080/01652176.2022.2102688

Sharun, K., Rawat, T., Kumar, R., Chandra, V., Saxena, A. C., et al. (2020). Clinical evaluation following the percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells (aBM-MSC) in dogs affected by vertebral compression fracture. Veterinary and Animal Science, 10, 100152. https://doi.org/10.1016/j.vas.2020.100152 DOI: https://doi.org/10.1016/j.vas.2020.100152

Shaw, T. J., & Martin, P. (2009). Wound repair at a glance. Journal of Cell Science, 122(18), 3209-3213. DOI: https://doi.org/10.1242/jcs.031187

Silver, F. H., Wang, M. C., & Pins, G. D. (1995). Preparation and use of fibrin glue in surgery. Biomaterials, 16(12), 891-903. DOI: https://doi.org/10.1016/0142-9612(95)93113-R

Singh, S., Young, A., & McNaught, C. E. (2017). The physiology of wound healing. Surgery (Oxford), 35(9), 473-477. DOI: https://doi.org/10.1016/j.mpsur.2017.06.004

Sivanarayanan, T. B., Bhat, I. A., Sharun, K., Palakkara, S., Singh, R., et al. (2023). Allogenic bone marrow-derived mesenchymal stem cells and its conditioned media for repairing acute and sub-acute peripheral nerve injuries in a rabbit model. Tissue and Cell, 82, 102053. https://doi.org/10.1016/j.tice.2023.102053 DOI: https://doi.org/10.1016/j.tice.2023.102053

Sood, A., Granick, M. S., & Tomaselli, N. L. (2014). Wound Dressings and Comparative Effectiveness Data. Advances in Wound Care, 3(8), 511-529. https://doi.org/10.1089/wound.2012.0401 DOI: https://doi.org/10.1089/wound.2012.0401

Sorg, H., Tilkorn, D. J., Hager, S., Hauser, J., & Mirastschijski, U. (2017). Skin wound healing: an update on the current knowledge and concepts. European Surgical Research, 58(1-2), 81-94. DOI: https://doi.org/10.1159/000454919

Spicer, P. P., & Mikos, A. G. (2010). Fibrin glue as a drug delivery system. Journal of Controlled Release, 148(1), 49-55. DOI: https://doi.org/10.1016/j.jconrel.2010.06.025

Spotnitz, W. D., Falstrom, J. K., & Rodeheaver, G. T. (1997). The role of sutures and fibrin sealant in wound healing. Surgical Clinics, 77(3), 651-669. DOI: https://doi.org/10.1016/S0039-6109(05)70573-9

Strong, A. L., Neumeister, M. W., & Levi, B. (2017). Stem Cells and Tissue Engineering: Regeneration of the Skin and Its Contents. Clinics in Plastic Surgery, 44(3), 635–650. https://doi.org/10.1016/j.cps.2017.02.020 DOI: https://doi.org/10.1016/j.cps.2017.02.020

Sullivan, T. P., Eaglstein, W. H., Davis, S. C., & Mertz, P. (2001). The pig as a model for human wound healing. Wound Repair and Regeneration, 9(2), 66-76. DOI: https://doi.org/10.1046/j.1524-475x.2001.00066.x

Swift, M. E., Burns, A. L., Gray, K. L., & DiPietro, L. A. (2001). Age-related alterations in the inflammatory response to dermal injury. Journal of Investigative Dermatology, 117(5), 1027-1035. DOI: https://doi.org/10.1046/j.0022-202x.2001.01539.x

Takagi, M., Akiba, T., Yamazaki, Y., Nariai, K & Iwaki, T. (2001). The wound-healing effect of fibrin glue for tracheal anastomosis in experimental pulmonary surgery. Surgery Today, 31(9), 845-847. DOI: https://doi.org/10.1007/s005950170063

Takeo, M., Lee, W., & Ito, M. (2015). Wound healing and skin regeneration. Cold Spring Harbor Perspectives in Medicine, 5(1), a023267. https://doi.org/10.1101/cshperspect.a023267 DOI: https://doi.org/10.1101/cshperspect.a023267

Tavassoli, M. (1983). Effect of the substratum on the growth of CFU-c in continuous marrow culture. Experientia, 39(4), 411-412. DOI: https://doi.org/10.1007/BF01963153

Tottoli, E. M., Dorati, R., Genta, I., Chiesa, E., Pisani, S., & Conti, B. (2020). Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics, 12(8), 735 https://doi.org/10.3390/ pharmaceutics12080735 DOI: https://doi.org/10.3390/pharmaceutics12080735

Witte, M. B., & Barbul, A. (1997). General principles of wound healing. The Surgical Clinics of North America, 77(3), 509–528. https://doi.org/10.1016/s0039-6109(05)70566-1 DOI: https://doi.org/10.1016/S0039-6109(05)70566-1

Yoo, S., Hsieh, J.S., Zou, P., & Kokoszka, J. (2009). Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper. Bioresource Technology, 100(24), 6416-6421. DOI: https://doi.org/10.1016/j.biortech.2009.06.112

Young, A., & McNaught, C. E. (2011). The physiology of wound healing. Surgery (Oxford), 29(10), 475-479. DOI: https://doi.org/10.1016/j.mpsur.2011.06.011

Yu, R., Zhang, H. & Guo, B. (2022). Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. Nano-Micro Letters, 14, 1.https://doi.org/10.1007/s40820-021-00751-y DOI: https://doi.org/10.1007/s40820-021-00751-y

Yücel, E. A., Oral, O., Olgaç, V., & Oral, C. K. (2003). Effects of fibrin glue on wound healing in oral cavity. Journal of Dentistry, 31(8), 569-575. DOI: https://doi.org/10.1016/S0300-5712(03)00113-1

Zahedi, P., Rezaeian, I., Ranaei Siadat, S. O., Jafari, S. H., & Supaphol, P. (2010). A review on wound dressings with an

emphasis on Electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies, 21(2), 77-95.

Zinn J. L. (2012). Surgical wound classification: communication is needed for accuracy. AORN Journal, 95(2), 274-278. https://doi.org/10.1016/j.aorn.2011.10.013 DOI: https://doi.org/10.1016/j.aorn.2011.10.013

Downloads

Published

2023-12-31

How to Cite

Banu, S. A., Sharun, K., Mamachan, M., Abualigah, L., Kumar, R., Pawde, A. M., Dhama, K., Maiti, S. K., & Amarpal. (2023). Wound Healing and Skin Regeneration: Present Status and Future Directions. Journal of Experimental Biology and Agricultural Sciences, 11(6), 871–883. https://doi.org/10.18006/2023.11(6).871.883

Issue

Section

REVIEW ARTICLES