Wound Healing and Skin Regeneration: Present Status and Future Directions
DOI:
https://doi.org/10.18006/2023.11(6).871.883Keywords:
Stem cell therapy, Wound healing, Regenerative medicine, Mesenchymal stem cells, Tissue engineeringAbstract
Wound healing and skin regeneration involve intricate interactions between various cellular, molecular, and biochemical factors. This narrative review aims to provide an in-depth analysis of the present status of therapeutic strategies for wound healing and skin regeneration. The literature review was performed using the Google Scholar search engine with the help of relevant keywords. Selected publications were used to synthesize different sections of the narrative review. The quest for innovative therapeutic approaches to accelerate wound healing and enhance skin regeneration has led to remarkable advancements in recent years. The landscape of therapeutic approaches for wound healing and skin regeneration is evolving rapidly, driven by groundbreaking discoveries and interdisciplinary collaborations. From advanced wound dressings and growth factor therapies to stem cell-based interventions and gene editing techniques, the arsenal of tools at our disposal continues to expand. As researchers continue to unravel the intricate mechanisms underlying wound repair and regeneration, the potential for transformative therapies to revolutionize patient care remains immense. Through a combination of innovative technologies, personalized approaches, ethical considerations, and global accessibility, the future of wound healing holds promise for improving the lives of countless individuals worldwide. Despite significant advancements, several knowledge gaps persist in the field of wound healing and skin regeneration. Further elucidation of cellular and molecular mechanisms governing wound repair, inflammation resolution, and scar formation is warranted. Exploring the crosstalk between wound healing and the microbiome and the influence of ageing and systemic diseases will unravel new therapeutic targets and strategies. As researchers delve deeper into understanding the intricate mechanisms underlying wound repair, the development of novel therapies and their clinical translation become increasingly promising. With a multidisciplinary approach and ongoing advancements in technology, biology, and medicine, the future holds great potential for transforming the field of wound healing and skin regeneration.
References
Abiraman, S., Varma, H. K., Umashankar, P. R., & John, A. (2002). Fibrin glue as an osteoinductive protein in a mouse model. Biomaterials, 23(14), 3023-3031. DOI: https://doi.org/10.1016/S0142-9612(02)00064-9
Amitha, B. S., Pawde, A.M., Sharun, K., Kalaiselvan, E., Shivaramu, S., et al. (2023). Haemato-biochemical alterations associated with the use of eggshell membrane as a dressing material for full-thickness wounds in a rabbit model. Exploratory Animal and Medical Research, 13(1), 117-121. https://doi.org/10.52635/eamr/13.1.117-121 DOI: https://doi.org/10.52635/eamr/13.1.117-121
Anderson, D. (1996). Wound management in small animal practice. In Practice, 18(3), 115-128. DOI: https://doi.org/10.1136/inpract.18.3.115
Banu, S. A., Pawde, A. M., Sharun, K., Kalaiselvan, E., Shivaramu, S., et al. (2023). Evaluation of bone marrow-derived mesenchymal stem cells with eggshell membrane for full-thickness wound healing in a rabbit model. Cell and Tissue Banking. https://doi.org/10.1007/s10561-023-10105-0 DOI: https://doi.org/10.1007/s10561-023-10105-0
Bist, D., Pawde, A. M., Amarpal, Kinjavdekar, P., Mukherjee, R., et al. (2021). Evaluation of canine bone marrow-derived mesenchymal stem cells for experimental full-thickness cutaneous wounds in a diabetic rat model. Expert Opinion on Biological Therapy, 21(12), 1655-1664. https://doi.org/10.1080/14712598.2022.1990260 DOI: https://doi.org/10.1080/14712598.2022.1990260
Boateng, J. S., Matthews, K. H., Stevens, H. N., & Eccleston, G. M. (2008). Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences, 97(8), 2892-2923. DOI: https://doi.org/10.1002/jps.21210
Bouwstra, J. A., & Honeywell-Nguyen, P. L. (2002). Skin structure and mode of action of vesicles. Advanced Drug Delivery Reviews, 54, S41-S55. DOI: https://doi.org/10.1016/S0169-409X(02)00114-X
Boyapati, L., & Wang, H. L. (2007). The role of stress in periodontal disease and wound healing. Periodontology, 44(1), 195-210. DOI: https://doi.org/10.1111/j.1600-0757.2007.00211.x
Brown, C. D., & Zitelli, J. A. (1993). A review of topical agents for wounds and methods of wounding: guidelines for wound management. The Journal of Dermatologic Surgery and Oncology, 19(8), 732-737. DOI: https://doi.org/10.1111/j.1524-4725.1993.tb00417.x
Cañedo-Dorantes, L., & Cañedo-Ayala, M. (2019). Skin acute wound healing: a comprehensive review. International Journal of Inflammation, 2019,1-16. DOI: https://doi.org/10.1155/2019/3706315
Canonico, S. (2003). The use of human fibrin glue in the surgical operations. Acta Bio-medica: Atenei Parmensis, 74, 21-25.
Carlson, M. A., & Longaker, M. T. (2004). The fibroblast populated collagen matrix as a model of wound healing: a review of the evidence. Wound Repair and Regeneration, 12(2), 134-147. DOI: https://doi.org/10.1111/j.1067-1927.2004.012208.x
Cialdai, F., Risaliti, C., & Monici, M. (2022). Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Frontiers in Bioengineering and Biotechnology, 10, 958381. https://doi.org/10.3389/fbioe.2022.958381 DOI: https://doi.org/10.3389/fbioe.2022.958381
Clark, R. A. (2003). Fibrin glue for wound repair: facts and fancy. Thrombosis and Haemostasis, 90(12), 1003-1006 DOI: https://doi.org/10.1160/TH03-08-0526
Clark, R. A., Ghosh, K., & Tonnesen, M. G. (2007). Tissue engineering for cutaneous wounds. The Journal of Investigative Dermatology, 127(5), 1018-1029. https://doi.org/10.1038/ sj.jid.5700715 DOI: https://doi.org/10.1038/sj.jid.5700715
Davidson, J. M. (1998). Animal models for wound repair. Archives of Dermatological Research, 290(1), S1-S11. DOI: https://doi.org/10.1007/PL00007448
Falanga, V. (2005). Wound healing and its impairment in the diabetic foot. The Lancet, 366(9498), 1736-1743. DOI: https://doi.org/10.1016/S0140-6736(05)67700-8
Franz, M. G. (2007). Optimizing healing of the acute wound by minimizing complications. Current Problems in Surgery, 44, 679-766. DOI: https://doi.org/10.1067/j.cpsurg.2007.07.001
Frykberg, R.G., & Banks, J. (2015). Challenges in the Treatment of Chronic Wounds. Advances in Wound Care, 4(9), 560-582. https://doi.org/10.1089/wound.2015.0635 DOI: https://doi.org/10.1089/wound.2015.0635
Gilliver, S. C., Ashworth, J. J., & Ashcroft, G. S. (2007). The hormonal regulation of cutaneous wound healing. Clinics in Dermatology, 25(1), 56-62. DOI: https://doi.org/10.1016/j.clindermatol.2006.09.012
Gonzalez, A. C., Costa, T. F., Andrade, Z. A., & Medrado, A. R. (2016). Wound healing - A literature review. Anais brasileiros de dermatologia, 91(5), 614-620. https://doi.org/10.1590/abd1806-4841.20164741 DOI: https://doi.org/10.1590/abd1806-4841.20164741
Gosain, A., & DiPietro, L. A. (2004). Ageingand wound healing. World Journal of Surgery, 28(3), 321–326. https://doi.org/10.1007/s00268-003-7397-6 DOI: https://doi.org/10.1007/s00268-003-7397-6
Guha Ray, P., Pal, P., Srivas, P. K., Basak, P., Roy, S., & Dhara, S. (2018). Surface modification of eggshell membrane with electrospun chitosan/polycaprolactone nanofibers for enhanced dermal wound healing. ACS Applied Bio Materials, 1(4), 985-998. DOI: https://doi.org/10.1021/acsabm.8b00169
Guo, S. A., & DiPietro, L. A. (2010). Factors affecting wound healing. Journal of Dental Research, 89(3), 219-229. DOI: https://doi.org/10.1177/0022034509359125
Herskovitz, I., Macquhae, F., Fox, J. D., & Kirsner, R. S. (2016). Skin movement, wound repair and development of engineered skin. Experimental Dermatology, 25(2), 99-100. https://doi.org/10.1111/exd.12916 DOI: https://doi.org/10.1111/exd.12916
Kalaydina, R. V., Bajwa, K., Qorri, B., Decarlo, A., & Szewczuk, M. R. (2018). Recent advances in "smart" delivery systems for extended drug release in cancer therapy. International Journal of Nanomedicine, 13, 4727–4745. https://doi.org/10.2147/IJN.S168053 DOI: https://doi.org/10.2147/IJN.S168053
Kolimi, P., Narala, S., Nyavanandi, D., Youssef, A. A. A., & Dudhipala, N. (2022). Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells, 11(15), 2439. https://doi.org/10.3390/cells11152439 DOI: https://doi.org/10.3390/cells11152439
Kucharzewski, M., Rojczyk, E., Wilemska-Kucharzewska, K., Wilk, R., Hudecki, J., & Los, M. J. (2019). Novel trends in application of stem cells in skin wound healing. European Journal of Pharmacology, 843, 307-315. DOI: https://doi.org/10.1016/j.ejphar.2018.12.012
Kwon, Y. B., Kim, H. W., Roh, D. H., Yoon, S. Y., Baek, et al. (2006). Topical application of epidermal growth factor accelerates wound healing by myofibroblast proliferation and collagen synthesis in rat. Journal of Veterinary Science, 7(2), 105-109. https://doi.org/10.4142/jvs.2006.7.2.105 DOI: https://doi.org/10.4142/jvs.2006.7.2.105
Li, J., Chen, J., & Kirsner, R. (2007). Pathophysiology of acute wound healing. Clinics in Dermatology, 25(1), 9-18. DOI: https://doi.org/10.1016/j.clindermatol.2006.09.007
Liang, C., Liao, L., & Tian, W. (2023). Advances Focusing on the Application of Decellularized Extracellular Matrix in Periodontal Regeneration. Biomolecules, 13(4), 673. https://doi.org/10.3390/ biom13040673 DOI: https://doi.org/10.3390/biom13040673
Lindblad, W. J. (2008). Considerations for selecting the correct animal model for dermal wound-healing studies. Journal of Biomaterials Science, Polymer Edition, 19(8), 1087-1096. DOI: https://doi.org/10.1163/156856208784909390
Liptak, J. M. (1997). An overview of the topical management of wounds. Australian Veterinary Journal, 75(6), 408-413. DOI: https://doi.org/10.1111/j.1751-0813.1997.tb14342.x
Masson Meyers, D. S., Andrade, T. A., Caetano, G. F., Guimaraes, F. R., Leite, M. N., Leite, S. N, & Frade, M. A. C. (2020). Experimental models and methods for cutaneous wound healing assessment. International Journal of Experimental Pathology, 101(1-2), 21-37. DOI: https://doi.org/10.1111/iep.12346
Mehanna, R. A., Nabil, I., Attia, N., Bary, A. A., Razek, K. A., Ahmed, T. A, & Elsayed, F. (2015). The effect of bone marrow-derived mesenchymal stem cells and their conditioned media topically delivered in fibrin glue on chronic wound healing in rats. BioMed Research International, 2015, 846062. DOI: https://doi.org/10.1155/2015/846062
Menke, N. B., Ward, K. R., Witten, T. M., Bonchev, D. G., & Diegelmann, R. F. (2007). Impaired wound healing. Clinics in Dermatology, 25(1), 19-25. DOI: https://doi.org/10.1016/j.clindermatol.2006.12.005
Mittal, A., Teotia, M., Soni, R. K., & Mittal, J. (2016). Applications of egg shell and egg shell membrane as adsorbents: a review. Journal of Molecular Liquids, 223: 376-387. DOI: https://doi.org/10.1016/j.molliq.2016.08.065
Mogoşanu, G. D., & Grumezescu, A. M. (2014). Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics, 463(2): 127-136. DOI: https://doi.org/10.1016/j.ijpharm.2013.12.015
Mooney, E., Loh, C., Pu, L.L., & ASPS/PSEF Technology Assessment Committee (2009). The use of fibrin glue in plastic surgery. Plastic and Reconstructive Surgery, 124(3), 989-992. DOI: https://doi.org/10.1097/PRS.0b013e3181b039a3
Negut, I., Dorcioman, G., & Grumezescu, V. (2020). Scaffolds for Wound Healing Applications. Polymers, 12(9), 2010. https://doi.org/10.3390/polym12092010 DOI: https://doi.org/10.3390/polym12092010
Ojeh, N., Pastar, I., Tomic-Canic, M., & Stojadinovic, O. (2015). Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications. International Journal of Molecular Sciences, 16(10), 25476-25501. https://doi.org/10.3390/ijms161025476 DOI: https://doi.org/10.3390/ijms161025476
Onyekwelu, I., Yakkanti, R., Protzer, L., Pinkston, C. M., Tucker, C., & Seligson, D. (2017). Surgical Wound Classification and Surgical Site Infections in the Orthopaedic Patient. Journal of the American Academy of Orthopaedic Surgeons. Global Research & Reviews, 1(3), e022. https://doi.org/10.5435/JAAOSGlobal-D-17-00022 DOI: https://doi.org/10.5435/JAAOSGlobal-D-17-00022
Pang, Q., Yang, F., Jiang, Z., Wu, K., Hou, R., & Zhu, Y. (2023). Smart wound dressing for advanced wound management: Real-time monitoring and on-demand treatment. Materials & Design, 111917. DOI: https://doi.org/10.1016/j.matdes.2023.111917
Papier, A., Peres, M. R., Bobrow, M., & Bhatia, A. (2000). The digital imaging system and dermatology. International Journal of Dermatology, 39(8), 561-575. DOI: https://doi.org/10.1046/j.1365-4362.2000.00033.x
Parnell, L. K., & Volk, S. W. (2019). The Evolution of Animal Models in Wound Healing Research: 1993–2017. Advances in Wound Care, 8(12), 692-702. DOI: https://doi.org/10.1089/wound.2019.1098
Peer, B. A., Bhat, A. R., Shabir, U., Bharti, M. K., Bhat, I. A., et al. (2022). Comparative evaluation of fracture healing potential of differentiated and undifferentiated guinea pig and canine bone marrow-derived mesenchymal stem cells in a guinea pig model. Tissue and Cell, 76, 101768. https://doi.org/10.1016/ j.tice.2022.101768 DOI: https://doi.org/10.1016/j.tice.2022.101768
Percival, N. J. (2002). Classification of wounds and their management. Surgery (Oxford), 20(5), 114-117. DOI: https://doi.org/10.1383/surg.20.5.114.14626
Qin, J., Chen, F., Wu, P., & Sun, G. (2022). Recent Advances in Bioengineered Scaffolds for Cutaneous Wound Healing. Frontiers in Bioengineering and Biotechnology, 10, 841583. https://doi.org/10.3389/fbioe.2022.841583 DOI: https://doi.org/10.3389/fbioe.2022.841583
Raica, M., & Cimpean, A. M. (2010). Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy. Pharmaceuticals, 3(3), 572–599. https://doi.org/10.3390/ph3030572 DOI: https://doi.org/10.3390/ph3030572
Robson, M. C., Steed, D. L., & Franz, M. G. (2001). Wound healing: biologic features and approaches to maximize healing trajectories. Current Problems in Surgery, 38(2), 72–140. https://doi.org/10.1067/msg.2001.111167 DOI: https://doi.org/10.1067/msg.2001.111167
Rodrigues, M., Kosaric, N., Bonham, C. A., & Gurtner, G. C. (2019). Wound healing: a cellular perspective. Physiological Reviews, 99(1), 665-706. DOI: https://doi.org/10.1152/physrev.00067.2017
Romanelli, M., Miteva, M., Romanelli, P., Barbanera, S., & Dini, V. (2013). Use of diagnostics in wound management. Current Opinion in Supportive and Palliative Care, 7(1), 106-110. DOI: https://doi.org/10.1097/SPC.0b013e32835dc0fc
Ruff, K. J., DeVore, D. P., Leu, M. D., & Robinson, M. A. (2009). Eggshell membrane: a possible new natural therapeutic for joint and connective tissue disorders. Results from two open-label human clinical studies. Clinical Interventions in Aging, 4, 235–240. DOI: https://doi.org/10.2147/CIA.S5797
Sah, M. K., & Rath, S. N. (2016). Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications. Materials Science and Engineering: C, 67, 807-821. DOI: https://doi.org/10.1016/j.msec.2016.05.005
Sharun, K., Jambagi, K., Kumar, R., Gugjoo, M. B., Pawde, A. M et al. (2022). Clinical applications of adipose-derived stromal vascular fraction in veterinary practice. The Veterinary Quarterly, 42(1), 151–166. https://doi.org/10.1080/01652176.2022.2102688 DOI: https://doi.org/10.1080/01652176.2022.2102688
Sharun, K., Rawat, T., Kumar, R., Chandra, V., Saxena, A. C., et al. (2020). Clinical evaluation following the percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells (aBM-MSC) in dogs affected by vertebral compression fracture. Veterinary and Animal Science, 10, 100152. https://doi.org/10.1016/j.vas.2020.100152 DOI: https://doi.org/10.1016/j.vas.2020.100152
Shaw, T. J., & Martin, P. (2009). Wound repair at a glance. Journal of Cell Science, 122(18), 3209-3213. DOI: https://doi.org/10.1242/jcs.031187
Silver, F. H., Wang, M. C., & Pins, G. D. (1995). Preparation and use of fibrin glue in surgery. Biomaterials, 16(12), 891-903. DOI: https://doi.org/10.1016/0142-9612(95)93113-R
Singh, S., Young, A., & McNaught, C. E. (2017). The physiology of wound healing. Surgery (Oxford), 35(9), 473-477. DOI: https://doi.org/10.1016/j.mpsur.2017.06.004
Sivanarayanan, T. B., Bhat, I. A., Sharun, K., Palakkara, S., Singh, R., et al. (2023). Allogenic bone marrow-derived mesenchymal stem cells and its conditioned media for repairing acute and sub-acute peripheral nerve injuries in a rabbit model. Tissue and Cell, 82, 102053. https://doi.org/10.1016/j.tice.2023.102053 DOI: https://doi.org/10.1016/j.tice.2023.102053
Sood, A., Granick, M. S., & Tomaselli, N. L. (2014). Wound Dressings and Comparative Effectiveness Data. Advances in Wound Care, 3(8), 511-529. https://doi.org/10.1089/wound.2012.0401 DOI: https://doi.org/10.1089/wound.2012.0401
Sorg, H., Tilkorn, D. J., Hager, S., Hauser, J., & Mirastschijski, U. (2017). Skin wound healing: an update on the current knowledge and concepts. European Surgical Research, 58(1-2), 81-94. DOI: https://doi.org/10.1159/000454919
Spicer, P. P., & Mikos, A. G. (2010). Fibrin glue as a drug delivery system. Journal of Controlled Release, 148(1), 49-55. DOI: https://doi.org/10.1016/j.jconrel.2010.06.025
Spotnitz, W. D., Falstrom, J. K., & Rodeheaver, G. T. (1997). The role of sutures and fibrin sealant in wound healing. Surgical Clinics, 77(3), 651-669. DOI: https://doi.org/10.1016/S0039-6109(05)70573-9
Strong, A. L., Neumeister, M. W., & Levi, B. (2017). Stem Cells and Tissue Engineering: Regeneration of the Skin and Its Contents. Clinics in Plastic Surgery, 44(3), 635–650. https://doi.org/10.1016/j.cps.2017.02.020 DOI: https://doi.org/10.1016/j.cps.2017.02.020
Sullivan, T. P., Eaglstein, W. H., Davis, S. C., & Mertz, P. (2001). The pig as a model for human wound healing. Wound Repair and Regeneration, 9(2), 66-76. DOI: https://doi.org/10.1046/j.1524-475x.2001.00066.x
Swift, M. E., Burns, A. L., Gray, K. L., & DiPietro, L. A. (2001). Age-related alterations in the inflammatory response to dermal injury. Journal of Investigative Dermatology, 117(5), 1027-1035. DOI: https://doi.org/10.1046/j.0022-202x.2001.01539.x
Takagi, M., Akiba, T., Yamazaki, Y., Nariai, K & Iwaki, T. (2001). The wound-healing effect of fibrin glue for tracheal anastomosis in experimental pulmonary surgery. Surgery Today, 31(9), 845-847. DOI: https://doi.org/10.1007/s005950170063
Takeo, M., Lee, W., & Ito, M. (2015). Wound healing and skin regeneration. Cold Spring Harbor Perspectives in Medicine, 5(1), a023267. https://doi.org/10.1101/cshperspect.a023267 DOI: https://doi.org/10.1101/cshperspect.a023267
Tavassoli, M. (1983). Effect of the substratum on the growth of CFU-c in continuous marrow culture. Experientia, 39(4), 411-412. DOI: https://doi.org/10.1007/BF01963153
Tottoli, E. M., Dorati, R., Genta, I., Chiesa, E., Pisani, S., & Conti, B. (2020). Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics, 12(8), 735 https://doi.org/10.3390/ pharmaceutics12080735 DOI: https://doi.org/10.3390/pharmaceutics12080735
Witte, M. B., & Barbul, A. (1997). General principles of wound healing. The Surgical Clinics of North America, 77(3), 509–528. https://doi.org/10.1016/s0039-6109(05)70566-1 DOI: https://doi.org/10.1016/S0039-6109(05)70566-1
Yoo, S., Hsieh, J.S., Zou, P., & Kokoszka, J. (2009). Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper. Bioresource Technology, 100(24), 6416-6421. DOI: https://doi.org/10.1016/j.biortech.2009.06.112
Young, A., & McNaught, C. E. (2011). The physiology of wound healing. Surgery (Oxford), 29(10), 475-479. DOI: https://doi.org/10.1016/j.mpsur.2011.06.011
Yu, R., Zhang, H. & Guo, B. (2022). Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. Nano-Micro Letters, 14, 1.https://doi.org/10.1007/s40820-021-00751-y DOI: https://doi.org/10.1007/s40820-021-00751-y
Yücel, E. A., Oral, O., Olgaç, V., & Oral, C. K. (2003). Effects of fibrin glue on wound healing in oral cavity. Journal of Dentistry, 31(8), 569-575. DOI: https://doi.org/10.1016/S0300-5712(03)00113-1
Zahedi, P., Rezaeian, I., Ranaei Siadat, S. O., Jafari, S. H., & Supaphol, P. (2010). A review on wound dressings with an
emphasis on Electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies, 21(2), 77-95.
Zinn J. L. (2012). Surgical wound classification: communication is needed for accuracy. AORN Journal, 95(2), 274-278. https://doi.org/10.1016/j.aorn.2011.10.013 DOI: https://doi.org/10.1016/j.aorn.2011.10.013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.