Phytotoxicity and genotoxicity assessment of organic and inorganic contaminants detected in pharmaceutical industrial wastewaters using Vigna radiata and Allium cepa
DOI:
https://doi.org/10.18006/2024.12(1).76.92Keywords:
Pharmaceutical industrial wastewater, Phytotoxicity, Genotoxicity, Chromosomal aberration, Mitotic index, GC-MSAbstract
The discharged effluent of pharmaceutical industrial wastewater treatment plants (PIWWTPs) exhibits substantial environmental toxicity due to the intricate combination of organic and inorganic pollutants. This study assessed the phytotoxicity, genotoxicity, and cytotoxicity of untreated and treated pharmaceutical industrial wastewater (PIWW). Most of the physicochemical parameters viz. COD, BOD, EC, sulfide, sulfate, nitrate, phosphate, grease, phenols, and metal concentrations viz. B, Cr, Ca, Cd, Cu, Zn, Pb, Hg, and As in untreated wastewater (UTW) were noted beyond the permissible limit and remained higher in treated wastewater (TW). The findings revealed that the performance of PIWWTP was woefully inadequate. The GC-MS spectra of UTW and TW revealed the presence of various organic contaminants. The toxicological studies showed that the UTW had a high degree of phytotoxicity, which persisted even after the treatment as it inhibited the seed germination in Vigna radiata. The seed germination was inhibited up to 70% and 50% tested at 50% concentration of UTW and TW respectively. Genotoxicity was measured by determining mitotic index and chromosomal aberrations in Allium cepa root apex grown in untreated and treated PIWW. Compared to the negative control, the mitotic index dropped to 85% and 75% at the 50% concentrations of UTW and TW, respectively. Chromosomal aberrations were also found in the cellular mass of root apex growing in both UTW and TW. According to the findings, it is unsafe for the environment to release PIWW that has not been properly treated, as this could pose serious risks to environmental health.
References
Adel, K., Amor, M., Alaeddine, R., Emira, N., Mousa, A., et al. (2021). Comparative Computational Analysis of Dirithromycin and Azithromycin in Search for a Potent Drug against COVID-19 caused by SARS-CoV-2: Evidence from molecular docking and dynamic simulation. Cellular and Molecular Biology, 67(5), 371-386. DOI: https://doi.org/10.14715/cmb/2021.67.5.50
Ali, M., Almohana, A. I., Alali, A. F., Kamal, M. A., Khursheed, A., Khursheed, A., & Kazmi, A. A. (2021). Common effluent treatment plants monitoring and process augmentation options to conform non-potable reuse. Frontiers in Environmental Science, 9, 741343. DOI: https://doi.org/10.3389/fenvs.2021.741343
Babaahmadi, F., Dobaradaran, S., Pazira, A., Eghbali, S. S., Khorsand, M., & Keshtkar, M. (2017). Data on metal levels in the inlet and outlet wastewater treatment plant of hospitals in Bushehr province, Iran. Data in brief, 10, 1-5. DOI: https://doi.org/10.1016/j.dib.2016.11.054
Babushok, V. I., Linstrom, P. J., Reed, J. J., Zenkevich, I. G., Brown, R. L., Mallard, W. G., & Stein, S. E. (2007). Development of a database of gas chromatographic retention properties of organic compounds. Journal of Chromatography A, 1157(1-2), 414-421. DOI: https://doi.org/10.1016/j.chroma.2007.05.044
Bakare, A. A., Okunola, A. A., Adetunji, O. A., & Jenmi, H. B. (2009). Genotoxicity assessment of a pharmaceutical effluent using four bioassays. Genetics and Molecular Biology, 32, 373-381. DOI: https://doi.org/10.1590/S1415-47572009000200026
Central pollution Control Board, India (2020). https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMTQwM18xNjU1MzU0NzkxX21lZGlhcGhvdG8xNjQ
Chen, S., Xie, J., & Wen, Z. (2021). Microalgae-based wastewater treatment and utilization of microalgae biomass. Advances in Bioenergy, 6(1), 165-198. DOI: https://doi.org/10.1016/bs.aibe.2021.05.002
Chowdhary, P., Singh, A., Chandra, R., Kumar, P. S., Raj, A., & Bharagava, R. N. (2022). Detection and identification of hazardous organic pollutants from distillery wastewater by GC-MS analysis and its phytotoxicity and genotoxicity evaluation by using Allium cepa and Cicer arietinum L. Chemosphere, 297, 134123. DOI: https://doi.org/10.1016/j.chemosphere.2022.134123
Dias, I. M., Mourão, L. C., Andrade, L. A., Souza, G. B., Viana, J. C., Oliveira, S. B., & Alonso, C. G. (2023). Degradation of antibiotic amoxicillin from pharmaceutical industry wastewater into a continuous flow reactor using supercritical water gasification. Water Research, 234, 119826. DOI: https://doi.org/10.1016/j.watres.2023.119826
Drzymała, J., & Kalka, J. (2023). Assessment of genotoxicity, mutagenicity, and cytotoxicity of diclofenac and sulfamethoxazole at environmental concentrations on Vicia faba. International Journal of Environmental Science and Technology, 21, 1-16. DOI: https://doi.org/10.1007/s13762-023-05238-4
Fiaz, M., Ahmed, I., Hassan, S. M. U., Niazi, A. K., Khokhar, M. F., Farooq, M. A., & Arshad, M. (2023). Antibiotics induced changes in nitrogen metabolism and antioxidative enzymes in mung bean (Vigna radiata). Science of The Total Environment, 873, 162449. DOI: https://doi.org/10.1016/j.scitotenv.2023.162449
Gowtham, K., Kar, A., Rout, S. R., Sheikh, A., Talegaonkar, S., Kesharwani, P., & Dandela, R. (2022). Hybrid chitosan-based nanoparticulate systems for drug delivery. In Hybrid Nanomaterials for Drug Delivery (pp. 129-164). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-85754-3.00007-1. DOI: https://doi.org/10.1016/B978-0-323-85754-3.00007-1
Grenni, P., Ancona, V., & Caracciolo, A. B. (2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, 136, 25-39. DOI: https://doi.org/10.1016/j.microc.2017.02.006
Gros, M., Marti, E., Balcázar, J. L., Boy-Roura, M., Busquets, A., et al. (2019). Fate of pharmaceuticals and antibiotic resistance genes in a full-scale on-farm livestock waste treatment plant. Journal of hazardous materials, 378, 120716. DOI: https://doi.org/10.1016/j.jhazmat.2019.05.109
Hamaidi-Chergui, F., & Brahim Errahmani, M. (2019). Water quality and physicochemical parameters of outgoing waters in a pharmaceutical plant. Applied Water Science, 9(7), 165. DOI: https://doi.org/10.1007/s13201-019-1046-1
Haq, I., & Kalamdhad, A. S. (2021). Phytotoxicity and cyto-genotoxicity evaluation of organic and inorganic pollutants containing petroleum refinery wastewater using plant bioassay. Environmental Technology & Innovation, 23, 101651. DOI: https://doi.org/10.1016/j.eti.2021.101651
Haq, I., Kumar, S., Raj, A., Lohani, M., & Satyanarayana, G. N. V. (2017). Genotoxicity assessment of pulp and paper mill effluent before and after bacterial degradation using Allium cepa test. Chemosphere, 169, 642-650. DOI: https://doi.org/10.1016/j.chemosphere.2016.11.101
James, O., Oluwaleye, S., Olufunmilayo, A., & Adebiyi, O. (2015). Cytotoxic effects and genotoxic screening of pharmaceutical effluents using onion bulbs (Allium cepa L.). Journal of Advances in Biology & Biotechnology, 2(1), 51-58. DOI: https://doi.org/10.9734/JABB/2015/12962
Koo, I., Kim, S., Shi, B., Lorkiewicz, P., Song, M., McClain, C., & Zhang, X. (2016). EIder: A compound identification tool for gas chromatography mass spectrometry data. Journal of Chromatography A, 1448, 107-114. DOI: https://doi.org/10.1016/j.chroma.2016.04.064
Kumar, V., & Chandra, R. (2020). Metagenomics analysis of rhizospheric bacterial communities of Saccharum arundinaceum growing on organometallic sludge of sugarcane molasses-based distillery. 3 Biotech, 10(7), 316. DOI: https://doi.org/10.1007/s13205-020-02310-5
Kumari, V., & Tripathi, A. K. (2019). Characterization of pharmaceuticals industrial effluent using GC–MS and FT-IR analyses and defining its toxicity. Applied Water Science, 9, 1-8. DOI: https://doi.org/10.1007/s13201-019-1064-z
Li, X., Deng, Q., Zhang, L., Wang, J., Wang, R., Zeng, Z., & Deng, S. (2019). Highly efficient hydrogenative ring-rearrangement of furanic aldehydes to cyclopentanone compounds catalyzed by noble metals/MIL-MOFs. Applied Catalysis A: General, 575, 152-158. DOI: https://doi.org/10.1016/j.apcata.2019.02.023
Mecozzi, M., Pietroletti, M., Scarpiniti, M., Acquistucci, R., & Conti, M. E. (2012). Monitoring of marine mucilage formation in Italian seas investigated by infrared spectroscopy and independent component analysis. Environmental Monitoring and Assessment, 184, 6025-6036. DOI: https://doi.org/10.1007/s10661-011-2400-4
Mehrarad, F., Ziarati, P., & Mousavi, Z. (2016). Removing heavy metals from pharmaceutical effluent by plarganium grandiflorum. Biomedical and Pharmacology Journal, 9(1), 151-161. DOI: https://doi.org/10.13005/bpj/922
Mercado, S. A. S., & Caleño, J. D. Q. (2020). Cytotoxic evaluation of glyphosate, using Allium cepa L. as bioindicator. Science of the total environment, 700, 134452. DOI: https://doi.org/10.1016/j.scitotenv.2019.134452
Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97-118. DOI: https://doi.org/10.17509/ijost.v4i1.15806
Ong, Y. S., Murugaiyah, V., Goh, B. H., & Khaw, K. Y. (2020). Bioactive xanthones from Garcinia mangostana. Plant-derived Bioactives: Chemistry and Mode of Action (pp 281-300). Springer, Singapore. https://doi.org/10.1007/978-981-15-2361-8_13 DOI: https://doi.org/10.1007/978-981-15-2361-8_13
Pashaei, R., Zahedipour-Sheshglani, P., Dzingelevičienė, R., Abbasi, S., & Rees, R. M. (2022). Effects of pharmaceuticals on the nitrogen cycle in water and soil: a review. Environmental Monitoring and Assessment, 194(2), 105. DOI: https://doi.org/10.1007/s10661-022-09754-7
Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman Jr, C. U., & Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chemical reviews, 119(6), 3510-3673. DOI: https://doi.org/10.1021/acs.chemrev.8b00299
Patel, N. B., & Patel, J. C. (2010). Synthesis and Antimicrobial Activity of 3-(1, 3, 4-Oxadiazol-2-yl) quinazolin-4 (3H)-ones. Scientia pharmaceutica, 78(2), 171-194. DOI: https://doi.org/10.3797/scipharm.0912-16
Ramirez-Morales, D., Masis-Mora, M., Beita-Sandi, W., Montiel-Mora, J. R., Fernandez-Fernandez, E., et al. (2021). Pharmaceuticals in farms and surrounding surface water bodies: Hazard and ecotoxicity in a swine production area in Costa Rica. Chemosphere, 272, 129574. DOI: https://doi.org/10.1016/j.chemosphere.2021.129574
Rana, R. S., Singh, P., Kandari, V., Singh, R., Dobhal, R., & Gupta, S. (2017). A review on characterization and bioremediation of pharmaceutical industries' wastewater: an Indian perspective. Applied water science, 7, 1-12. DOI: https://doi.org/10.1007/s13201-014-0225-3
Ray, A., Tripathi, S., & Rai, A. (2019). Pharmaceuticals Export and Market Evolution in India and Thailand. Trends in Biosciences, 12(1), 1-20.
Rice, E.W. (Ed.) (2012). Standard methods for the examination of water and wastewater (Vol. 10). Washington, DC: American public health association.
Roy, S., Nagarchi, L., Das, I., Mangalam Achuthananthan, J., & Krishnamurthy, S. (2015). Cytotoxicity, Genotoxicity, and Phytotoxicity of Tannery Effluent Discharged into Palar River Basin, Tamil Nadu, India. Journal of toxicology, 2015, 504360. https://doi.org/10.1155/2015/504360. DOI: https://doi.org/10.1155/2015/504360
Salian, R., Wani, S., Reddy, R., & Patil, M. (2018). Effect of brewery wastewater obtained from different phases of treatment plant on seed germination of chickpea (Cicer arietinum), maize (Zea mays), and pigeon pea (Cajanus cajan). Environmental Science and Pollution Research, 25, 9145-9154. DOI: https://doi.org/10.1007/s11356-018-1218-9
Samal, K., Mahapatra, S., & Ali, M. H. (2022). Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus, 6, 100076. DOI: https://doi.org/10.1016/j.nexus.2022.100076
Shan, T., Ma, Q., Guo, K., Liu, J., Li, W., Wang, F., & Wu, E. (2011). Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Current molecular medicine, 11(8), 666-677. DOI: https://doi.org/10.2174/156652411797536679
Sharif, A., Ashraf, M., Anjum, A. A., Javeed, A., Altaf, I., et al. (2016). Pharmaceutical wastewater being composite mixture of environmental pollutants may be associated with mutagenicity and genotoxicity. Environmental Science and Pollution Research, 23, 2813-2820. DOI: https://doi.org/10.1007/s11356-015-5478-3
Singh, K., Tripathi, S., & Chandra, R. (2023). Bacterial assisted phytoremediation of heavy metals and organic pollutants by Cannabis sativa as accumulator plants growing on distillery sludge for ecorestoration of polluted site. Journal of Environmental Management, 332, 117294. DOI: https://doi.org/10.1016/j.jenvman.2023.117294
Singh, R.L., Singh, R.P. (2018). Introduction. In: R.L. Singh, R.P. Singh (Eds.), Advances in Biological Treatment of Industrial Waste Water and Their Recycling for a Sustainable Future (pp. 1–11). Springer Nature Singapore. https://doi.org/10.1007/ 978-981-13-1468-1. DOI: https://doi.org/10.1007/978-981-13-1468-1_1
Soni, K., Jyoti, K., Chandra, H., & Chandra, R. (2022). Bacterial antibiotic resistance in municipal wastewater treatment plant; mechanism and its impacts on human health and economy. Bioresource Technology Reports, 19, 101080. DOI: https://doi.org/10.1016/j.biteb.2022.101080
Soni, K., Kothamasi, D., & Chandra, R. (2024). Municipal wastewater treatment plant showing a potential reservoir for clinically relevant MDR bacterial strains co-occurrence of ESBL genes and integron-integrase genes. Journal of Environmental Management, 351, 119938. DOI: https://doi.org/10.1016/j.jenvman.2023.119938
Theoneste, S., Vincent, N. M., & Xavier, N. F. (2020). The effluent quality discharged and its impacts on the receiving environment case of kacyiru sewerage treatment plant, Kigali, Rwanda. International Journal of Agriculture and Environmental Research 6(11), 20-29.
Tseng, T. H., Lee, H. J., Lee, Y. J., Lee, K. C., Shen, C. H., & Kuo, H. C. (2021). Ailanthoidol, a neolignan, suppresses TGF-β1-induced HepG2 hepatoblastoma cell progression. Biomedicines, 9(9), 1110. DOI: https://doi.org/10.3390/biomedicines9091110
Umar, H., Aliyu, M. R., Usman, A. G., Ghali, U. M., Abba, S. I., & Ozsahin, D. U. (2023). Prediction of cell migration potential on human breast cancer cells treated with Albizia lebbeck ethanolic extract using extreme machine learning. Scientific Reports, 13(1), 22242. DOI: https://doi.org/10.1038/s41598-023-49363-z
Wadaan, M. A., Baabbad, A., Khan, M. F., Shanmuganathan, R., & Daniel, F. (2023). Phytotoxicity and cytotoxicity attributes of immobilized Bacillus cereus treated and untreated textile effluents on Vigna mungo seeds and Artemia franciscana larvae. Environmental Research, 231, 116111. DOI: https://doi.org/10.1016/j.envres.2023.116111
Yadav, A., Raj, A., Purchase, D., Ferreira, L. F. R., Saratale, G. D., & Bharagava, R. N. (2019). Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a Common Effluent Treatment Plant (CETP) in Unnao district, India using Vigna radiata and Allium cepa. Chemosphere, 224, 324-332. DOI: https://doi.org/10.1016/j.chemosphere.2019.02.124
Yang, L., Han, D. H., Lee, B. M., & Hur, J. (2015). Characterizing treated wastewaters of different industries using clustered fluorescence EEM–PARAFAC and FT-IR spectroscopy:
Implications for downstream impact and source identification. Chemosphere, 127, 222-228.
Zhu, D., Ge, C., Sun, Y., Yu, H., Wang, J., & Sun, H. (2024). Identification of organic pollutants and heavy metals in natural rubber wastewater and evaluation its phytotoxicity and cytogenotoxicity. Chemosphere, 349, 140503. DOI: https://doi.org/10.1016/j.chemosphere.2023.140503
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.