Exploring the untargeted metabolites of Moringa oleifera Lam seed oil using two-dimensional gas chromatography with time of flight mass spectrometry for therapeutic application

Authors

  • Moumita Das Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India https://orcid.org/0000-0002-1272-1740
  • Jatindra Nath Mohanty School of Applied Sciences, Centurion University of Technology and Management, Ramachandrapur, Jatni-752050, Odisha, India https://orcid.org/0000-0001-9228-8395
  • Sanat Kumar Bhuyan Department of Oral Medicine and Radiology, Institute of Dental Science, Siksha 'O’ Anusandhan (Deemed to be University), Bhubaneswar, India https://orcid.org/0000-0002-5460-3750
  • Ruchi Bhuyan Department of Oral Pathology and Microbiology and Department of Medical Research, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India https://orcid.org/0000-0002-4082-8393

DOI:

https://doi.org/10.18006/2023.11(6).930.939

Keywords:

Moringa oleifera, Untargeted metabolites, GCGC-TOF-MS, Therapeutic application, GC-MS

Abstract

Moringa oleifera Lam is an economically and medicinally important plant. However, its essential oil characterization has been limited to one-dimensional gas chromatography and mass spectrometry. This study identified secondary metabolite composition and variation in M. oleifera seed oil through two-dimensional gas chromatography with time of flight mass spectrometry and their associated bioactivity. GC×GC TOF MS analysis of M. oleifera seed oil was performed on an Agilent 7890 Gas chromatograph equipped with Pegasus 2D GC-TOFMS. About 1µl of the sample (dissolved in n-Hexane) was injected into the system, and the carrier gas was Helium. Identification was made using ChromaTOF software with reference to the NIST library. A total of 2000 phytoconstituents were obtained, of which 236 were identified using the NIST mass spectral values. Total constituents were classified into alkanes (64), alkenes (11), aldehydes (7), alcohol (10), acids (18), acid esters (70), Ketones (10), benzenoids (10), Monoterpenoids (1), olefins (6), Phenols (1), an alkaloid (1), triterpenoid (4), diterpenoid (1), sesquiterpenoid (2), tocopherol (2), and Others (18). Based on area percentage, fatty acids and their derivatives were predominant. The major constituents were Erucic acid (9.10%), trans-13-Octadecenoic acid (6.06%), Triethyl citrate (5.15%), Bis-(3,5,5-trimethylhexyl) phthalate (4.94%). This study reports a detailed metabolic profiling of M. oleifera seeds, which opens up the possibility of identifying and decoding specific bioactivities leading to novel drug discovery in the future.

Author Biography

Ruchi Bhuyan, Department of Oral Pathology and Microbiology and Department of Medical Research, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India

Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India

References

Abdulhussain, N., Nawada, S., & Schoenmakers, P. (2021). Latest trends on the future of three-dimensional separations in chromatography. Chemical Reviews, 121(19), 12016-12034. https://doi.org/10.1021/acs.chemrev.0c01244 DOI: https://doi.org/10.1021/acs.chemrev.0c01244

Adegbe, A. A., Larayetan, R. A., & Omojuwa, T. J. (2016). Proximate analysis, physicochemical properties and chemical constituents characterization of Moringa oleifera (Moringaceae) seed oil using GC-MS analysis. American Journal of Chemistry, 6(2), 23-28. DOI: 10.5923/j.chemistry.20160602.01

Aldakheel, R. K., Rehman, S., Almessiere, M. A., Khan, F. A., Gondal, M. A., Mostafa, A., & Baykal, A. (2020). Bactericidal and in vitro cytotoxicity of moringa oleifera seed extract and its elemental analysis using laser-induced breakdown spectroscopy. Pharmaceuticals, 13(8), 193. https://doi.org/10.3390/ph13080193 DOI: https://doi.org/10.3390/ph13080193

AL-Obaidi, F. J., Thaker, A. A., & Ramizy, A. (2021) GC-Mass Spectrometry Analysis of Iraqi Moringa Oleifera Seeds Extract. Indian Journal of Forensic Medicine & Toxicology, 15 (1), 2274-2278. DOI: 10.37506/ijfmt.v15i1.13741 DOI: https://doi.org/10.37506/ijfmt.v15i1.13741

Andrade, P. V., Palanca, C. F., de Oliveira, M. A. C., Ito, C. Y. K., & dos Reis, A. G. (2021). Use of Moringa oleifera seed as a natural coagulant in domestic wastewater tertiary treatment: Physicochemical, cytotoxicity and bacterial load evaluation. Journal of Water Process Engineering, 40, 101859. https://doi.org/10.1016/j.jwpe.2020.101859 DOI: https://doi.org/10.1016/j.jwpe.2020.101859

Athikomkulchai, S., Tunit, P., Tadtong, S., Jantrawut, P., Sommano, S. R., & Chittasupho, C. (2021). Moringa oleifera seed oil formulation physical stability and chemical constituents for enhancing skin hydration and antioxidant activity. Cosmetics, 8(1), 2. https://doi.org/10.3390/cosmetics8010002 DOI: https://doi.org/10.3390/cosmetics8010002

Atta, A. H., Mouneir, S. M., Nasr, S. M., Sedky, D., Mohamed, A. M., Atta, S. A., & Desouky, H. M. (2019). Phytochemical studies and anti-ulcerative colitis effect of Moringa oleifera seeds and Egyptian propolis methanol extracts in a rat model. Asian Pacific Journal of Tropical Biomedicine, 9(3), 98. DOI: https://doi.org/10.4103/2221-1691.254603

Bassey, K., Mabowe, M., Mothibe, M., & Witika, B. A. (2022). Chemical Characterization and Nutritional Markers of South African Moringa oleifera Seed Oils. Molecules, 27(18), 5749. https://doi.org/10.3390/molecules27185749 DOI: https://doi.org/10.3390/molecules27185749

Das, M., Panda, N. R., Bhuyan, R., & Bhuyan, S. K. (2023). Moringa oleifera and its application in dental conditions: A systematic review and meta-analysis. Journal of Herbmed Pharmacology, 12(3), 331-336.doi: 10.34172/jhp.2023.35. DOI: https://doi.org/10.34172/jhp.2023.35

Delgado, A., Al-Hamimi, S., Ramadan, M. F., Wit, M. D., Durazzo, A., Nyam, K. L., & Issaoui, M. (2020). Contribution of tocols to food sensorial properties, stability, and overall quality. Journal of Food Quality, 2020, 1-8. https://doi.org/10.1155/2020/8885865 DOI: https://doi.org/10.1155/2020/8885865

Fiehn, O. (2002). Metabolomics–the link between genotypes and phenotypes. Plant molecular biology, 48, 155-171. https://doi.org/10.1023/A:1013713905833 DOI: https://doi.org/10.1007/978-94-010-0448-0_11

Gu, X., Yang, Y., & Wang, Z. (2020). Nutritional, phytochemical, antioxidant, α-glucosidase and α-amylase inhibitory properties of Moringa oleifera seeds. South African Journal of Botany, 133, 151-160. https://doi.org/10.1016/j.sajb.2020.07.021 DOI: https://doi.org/10.1016/j.sajb.2020.07.021

Islam, Z., Islam, S. M., Hossen, F., Mahtab-ul-Islam, K., Hasan, M. R., & Karim, R. (2021). Moringa oleifera is a prominent source of nutrients with potential health benefits. International Journal of Food Science, 2021. 10.1155/2021/6627265 DOI: https://doi.org/10.1155/2021/6627265

Kashyap, P., Kumar, S., Riar, C. S., Jindal, N., Baniwal, P., et al. (2022). Recent advances in Drumstick (Moringa oleifera) leaves bioactive compounds: Composition, health benefits, bioaccessibility, and dietary applications. Antioxidants, 11(2), 402. 10.3390/antiox11020402 DOI: https://doi.org/10.3390/antiox11020402

Kazi, M., Alanazi, Y., Kumar, A., Shahba, A. A. W., Rizwan Ahamad, S., & Alghamdi, K. M. (2023). Oral bioactive self-nanoemulsifying drug delivery systems of remdesivir and baricitinib: a paradigmatic case of drug repositioning for cancer management. Molecules, 28(5), 2237. https://doi.org/10.3390/molecules28052237 DOI: https://doi.org/10.3390/molecules28052237

Leone, A., Spada, A., Battezzati, A., Schiraldi, A., Aristil, J., & Bertoli, S. (2016). Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health. International journal of molecular sciences, 17(12), 2141. https://doi.org/10.3390/ijms17122141 DOI: https://doi.org/10.3390/ijms17122141

Liu, R., Bao, Z. X., Zhao, P. J., & Li, G. H. (2021). Advances in the study of metabolomics and metabolites in some species interactions. Molecules, 26(11), 3311. https://doi.org/10.3390/molecules26113311 DOI: https://doi.org/10.3390/molecules26113311

Liu, R., Liu, J., Huang, Q., Liu, S., & Jiang, Y. (2022). Moringa oleifera: a systematic review of its botany, traditional uses, phytochemistry, pharmacology and toxicity. Journal of Pharmacy and Pharmacology, 74(3), 296-320. https://doi.org/10.1093/jpp/ rgab131 DOI: https://doi.org/10.1093/jpp/rgab131

Mashamaite, C. V., Pieterse, P. J., Mothapo, P. N., & Phiri, E. E. (2021). Moringa oleifera in South Africa: A review on its production, growing conditions and consumption as a food source. South African Journal of Science, 117(3-4), 1-7. http://dx.doi.org/10.17159/sajs.2021/8689 DOI: https://doi.org/10.17159/sajs.2021/8689

Masyita, A., Sari, R. M., Astuti, A. D., Yasir, B., Rumata, N. R., et al. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food chemistry: X, 13, 100217. https://doi.org/10.1016/j.fochx.2022.100217 DOI: https://doi.org/10.1016/j.fochx.2022.100217

Meireles, D., Gomes, J., Lopes, L., Hinzmann, M., & Machado, J. (2020). A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: integrative approach on conventional and traditional Asian medicine. Advances in Traditional Medicine, 20(4), 495-515. https://doi.org/10.1007/ s13596-020-00468-0 DOI: https://doi.org/10.1007/s13596-020-00468-0

Mohanty, M., Mohanty, S., Bhuyan, S. K., & Bhuyan, R. (2021). Phytoperspective of Moringa oleifera for oral health care: An innovative ethnomedicinal approach. Phytotherapy Research, 35(3), 1345-1357. https://doi.org/10.1002/ptr.6896 DOI: https://doi.org/10.1002/ptr.6896

Özcan, M. M. (2020). Moringa spp: Composition and bioactive properties. South African Journal of Botany, 129, 25-31. https://doi.org/10.1016/j.sajb.2018.11.017 DOI: https://doi.org/10.1016/j.sajb.2018.11.017

Palafox, J. O., Navarrete, A., Sacramento-Rivero, J. C., Rubio-Atoche, C., Escoffie, P. A., & Rocha-Uribe, J. A. (2012). Extraction and characterization of oil from Moringa oleifera using supercritical CO2 and traditional solvents. American Journal of Analytical Chemistry, 3 (12A), 946-949. DOI:10.4236/ ajac.2012.312A125 DOI: https://doi.org/10.4236/ajac.2012.312A125

Patil, S. V., Mohite, B. V., Marathe, K. R., Salunkhe, N. S., Marathe, V., & Patil, V. S. (2022). Moringa tree, gift of nature: a review on nutritional and industrial potential. Current Pharmacology Reports, 8(4), 262-280. 10.1007/s40495-022-00288-7 DOI: https://doi.org/10.1007/s40495-022-00288-7

Raza, A. (2020). Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant cell reports, 41, 741-763. https://doi.org/10.1007/s00299-020-02635-8 DOI: https://doi.org/10.1007/s00299-020-02635-8

Salem, M. A., Perez de Souza, L., Serag, A., Fernie, A. R., Farag, M. A., Ezzat, S. M., & Alseekh, S. (2020). Metabolomics in the context of plant natural products research: From sample preparation to metabolite analysis. Metabolites, 10(1), 37. https://doi.org/10.3390/metabo10010037 DOI: https://doi.org/10.3390/metabo10010037

Trigo, C., Castello, M. L., Ortola, M. D., Garcia-Mares, F. J., & Desamparados Soriano, M. (2020). Moringa oleifera: An unknown crop in developed countries with great potential for industry and adapted to climate change. Foods, 10(1), 31. https://doi.org/10.3390/foods10010031 DOI: https://doi.org/10.3390/foods10010031

Vaou, N., Stavropoulou, E., Voidarou, C., Tsakris, Z., Rozos, G., Tsigalou, C., & Bezirtzoglou, E. (2022). Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics, 11(8), 1014. https://doi.org/10.3390/antibiotics11081014 DOI: https://doi.org/10.3390/antibiotics11081014

Wang, F., Bao, Y., Zhang, C., Zhan, L., Khan, W., et al. (2022). Bioactive components and anti-diabetic properties of Moringa oleifera Lam. Critical Reviews in Food Science and Nutrition, 62(14), 3873-3897. https://doi.org/10.1080/10408398.2020.1870099 DOI: https://doi.org/10.1080/10408398.2020.1870099

Wang, S., Alseekh, S., Fernie, A. R., & Luo, J. (2019). The structure and function of major plant metabolite modifications. Molecular Plant, 12(7), 899-919. https://doi.org/10.1016/j.molp.2019.06.001 DOI: https://doi.org/10.1016/j.molp.2019.06.001

Wong, Y. F., Chin, S. T., Perlmutter, P., & Marriott, P. J. (2015). Evaluation of comprehensive two-dimensional gas chromatography with accurate mass time-of-flight mass spectrometry for the metabolic profiling of plant–fungus interaction in Aquilaria malaccensis. Journal of Chromatography A, 1387, 104-115. https://doi.org/10.1016/j.chroma.2015.01.096 DOI: https://doi.org/10.1016/j.chroma.2015.01.096

Zhou, W., Li, J., Wang, X., Liu, L., Li, Y., et al. (2023). Research Progress on Extraction, Separation, and Purification Methods of Plant Essential Oils. Separations, 10(12), 596. https://doi.org/10.3390/separations10120596 DOI: https://doi.org/10.3390/separations10120596

Downloads

Published

2023-12-31

How to Cite

Das, M., Mohanty, J. N., Bhuyan, S. K., & Bhuyan, R. (2023). Exploring the untargeted metabolites of Moringa oleifera Lam seed oil using two-dimensional gas chromatography with time of flight mass spectrometry for therapeutic application. Journal of Experimental Biology and Agricultural Sciences, 11(6), 930–939. https://doi.org/10.18006/2023.11(6).930.939

Issue

Section

RESEARCH ARTICLES

Categories