Root attributes governing drought stress adaptation and the associated molecular markers in chromosome segment substitution lines in rice (Oryza sativa L.)
DOI:
https://doi.org/10.18006/2023.11(6).947.963Keywords:
Phenotype, Genetic diversity, SSR, Wild rice, Plasticity, Drought stressAbstract
The wild relatives of cultivated rice offer crucial resistance genes for combating stresses like drought. Developing rice varieties with drought tolerance is possible through chromosome segment substitution lines (CSSLs), which blend the genetic background of a high-yielding parent with specific chromosome segments from a donor parent. This study aimed to study the effect of drought stress on various root traits of chromosome segment substitution lines (CSSLs) and their relationship with specific molecular markers. Ninety-six genotypes, including 80 chromosome segment substitution lines (Curinga x O. rufipogon and Curinga x O. meridionalis), 9 New Rice for Africa (NERICAs) and 7 controls were grown in Basket and PVC pipe methods for phenotyping different root traits. Under drought stress (DS), MER16, MER20, RUF10, RUF16, RUF44, NERICA1, and NERICA3 showed superior performance for most of the root traits. These evaluations were supplemented with association analysis of 17 root trait-linked simple sequence repeat (SSR) markers with root phenotypic traits. The marker RM201 is strongly associated with multiple root traits, found to be independent of three growth conditions (well-watered “WW” under Basket, WW condition and DS conditions under PVC pipe). The marker RM316 is associated with root volume, and the marker RM7424 and RM1054 show maximum root length. In conclusion, these markers can be used in marker-assisted breeding programs, and the lines carrying them can be used as parental lines in variety-development programs for drought tolerance.
References
Abdalla, M., Ahmed, M. A., Cai, G., Zarebanadkauki, M., & Carminati, A. (2022). Coupled effects of soil drying and salinity on soil–plant hydraulics. Plant Physiology, 190(2), 1228-1241. DOI: https://doi.org/10.1093/plphys/kiac229
Anilkumar, C., Sah, R. P., Beena, R., Azharudheen TP, M., Kumar, A., et al. (2023). Conventional and contemporary approaches for drought tolerance rice breeding: Progress and prospects. Plant Breeding, 142(4), 418-438. DOI: https://doi.org/10.1111/pbr.13119
Atwell, B. J., Wang, H., & Scafaro, A. P. (2014). Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa?. Plant Science, 215, 48-58. DOI: https://doi.org/10.1016/j.plantsci.2013.10.007
Barik, M., Dash, S.K., Padhi, S., & Swain, P. (2017). Effect of drought on morpho-physiological , yield and yield traits of chromosome segment substitution lines ( CSSLs ) derived from wild species of rice. Oryza, 54, 65–72.
Bimpong, I. K., Serraj, R., Chin, J. H., Ramos, J., Mendoza, E. M., et al. (2011). Identification of QTLs for drought-related traits in alien introgression lines derived from crosses of rice (Oryza sativa cv. IR64)× O. glaberrima under lowland moisture stress. Journal of Plant Biology, 54, 237-250. https://doi.org/10.1093/ bioinformatics/btm308 DOI: https://doi.org/10.1007/s12374-011-9161-z
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics (Oxford, England), 23(19), 2633–2635. https://doi.org/10.1093/bioinformatics/btm308 DOI: https://doi.org/10.1093/bioinformatics/btm308
Chen, Y., Yang, W., Gao, R., Chen, Y., Zhou, Y., Xie, J., & Zhang, F. (2023) Genome-Wide Analysis of microRNAs and Their Target Genes in Dongxiang Wild Rice (Oryza rufipogon Griff.) Responding to Salt Stress. International Journal of Molecular Sciences, 24(4), 4069. DOI: https://doi.org/10.3390/ijms24044069
Dash, G. K., Barik, M., Debata, A. K., Baig, M. J., & Swain, P. (2017). Identification of most important rice root morphological markers in response to contrasting moisture regimes under vegetative stage drought. Acta Physiologiae Plantarum, 39(1), 8. https://doi.org/10.1007/s11738-016-2297-1 DOI: https://doi.org/10.1007/s11738-016-2297-1
de Morais, O.P., Castro, E.D.M., Soares, A.A., Guimaraes, E.P., Chatel, M., et al (2005). BRSMG Curinga: cultivar de arroz de terras altas de ampla adaptacicão para o Brasil. Embrapa Arroz e Feijão Comunicado Técnico
de Willigen, P., Nielsen, N.E., Claassen, N., Castrignanò, A.M. (2000) Modelling Water and Nutrient Uptake. In A.L. Smit, A.G. Bengough, C. Engels, M. van Noordwijk, S. Pellerin, S.C. van de Geijn (Eds.) Root Methods (pp. 509–543). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04188-8_15. DOI: https://doi.org/10.1007/978-3-662-04188-8_15
Ding, G., Hu, B., Zhou, Y., Yang, W., Zhao, M., Xie, J., & Zhang, F. (2022). Development and Characterization of Chromosome Segment Substitution Lines Derived from Oryza rufipogon in the background of the Oryza sativa indica Restorer Line R974. Genes, 13(5), 735. DOI: https://doi.org/10.3390/genes13050735
Feng, F., Xu, X., Du, X., Tong, H., Luo, L., & Mei, H. (2012). Assessment of drought resistance among wild rice accessions using a protocol based on single-tiller propagation and PVC-tube cultivation. Australian Journal of Crop Science, 6(7), 1204-1211.
Fonta, J. E., Giri, J., Vejchasarn, P., Lynch, J. P., & Brown, K. M. (2022). Spatiotemporal responses of rice root architecture and anatomy to drought. Plant and Soil, 479(1-2), 443-464. https://doi.org/10.1007/ s11104-022-05527-w DOI: https://doi.org/10.1007/s11104-022-05527-w
Ghosh, D., & Xu, J. (2014) Abiotic stress responses in plant roots: A proteomics perspective. Front. Plant Science, 5, 1–13. DOI: https://doi.org/10.3389/fpls.2014.00006
Henry, A. (2013) IRRI’s drought stress research in rice with emphasis on roots: Accomplishments over the last 50 years. Plant Root, 7, 92–106. https://doi.org/10.3117/plantroot.7.92 DOI: https://doi.org/10.3117/plantroot.7.92
Jeyasri, R., Muthuramalingam, P., Satish, L., Pandian, S. K., Chen, J.T., et al. (2021). An overview of abiotic stress in cereal crops: Negative impacts, regulation, biotechnology and integrated omics. Plants. 10(7), 1472. doi: 10.3390/ plants10071472.https://doi.org/ 10.3390/plants10071472 DOI: https://doi.org/10.3390/plants10071472
Kadam, N.N., Tamilselvan, A., Lawas, L.M.F., et al (2017) Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit. The Plant Physiology, 174, 2302–2315. https://doi.org/10.1104/pp.17.00500 DOI: https://doi.org/10.1104/pp.17.00500
Kadam, N.N., Yin. X., Bindraban, P.S., Strutik, PC, & Jagdish, K.S.V. (2015). Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice? Plant Physiolgy, 167, 1389–1401. https://doi.org/10.1104/pp.114.253328 DOI: https://doi.org/10.1104/pp.114.253328
Li, X., Zhang, S., Lowey, D., Hissam, C., Clevenger, J., et al. (2023). A derived weedy rice× ancestral cultivar cross identifies evolutionarily relevant weediness QTLs. Molecular Ecology, 32(22), 5971-5985. DOI: https://doi.org/10.1111/mec.17172
Long, W., Li, N., Jin, J., Wang, J., Dan, D., et al. (2023). Resequencing-based QTL mapping for yield and resistance traits reveals great potential of Oryza longistaminata in rice breeding. The Crop Journal, 11(5), 1541-1549. DOI: https://doi.org/10.1016/j.cj.2023.03.017
Lu, H., Redus, M.A., Coburn, J.R. Rutger, J.N., McCough, S.R., & Tail, TH (2005). Population structure and breeding patterns of 145 US rice cultivars based on SSR marker analysis. Crop Science, 45, 66–76. https://doi.org/10.2135/cropsci2005.0066 DOI: https://doi.org/10.2135/cropsci2005.0066
Magalhães, P.C., de Souza, T.C., & Cantão, F.R.O. (2011). Early evaluation of root morphology of maize genotypes under phosphorus deficiency. Plant, Soil and Environment, 57(4),135–138. https://doi.org/10.17221/360/2010-pse DOI: https://doi.org/10.17221/360/2010-PSE
Matsui, T., & Singh, B.B. (2003). Root characteristics in cowpea related to drought tolerance at the seedling stage. Experimental Agriculture, 39(1), 29–38. https://doi.org/10.1017/ S0014479703001108 DOI: https://doi.org/10.1017/S0014479703001108
McCouch, S.R., Sweeney, M., Li, J., Jiang, H., Thomson, M. et al (2007). Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica, 154, 317–339. https://doi.org/10.1007/s10681-006-9210-8 DOI: https://doi.org/10.1007/s10681-006-9210-8
Meena, R.K., Bhusal, N., Kumar, K., Jain, R., & Jain, S.(2019). Intervention of molecular breeding in water saving rice production system: aerobic rice. 3 Biotech, 9, 1-12. DOI: https://doi.org/10.1007/s13205-019-1657-0
Mohanty, J. N., Chand, S. K., & Joshi, R. K. (2019). Multiple microRNAs regulate the floral development and sex differentiation in the dioecious cucurbit Cocciniagrandis (L.) Voigt. Plant Molecular Biology Reporter, 37, 111-128. DOI: https://doi.org/10.1007/s11105-019-01143-8
Nachimuthu, V.V., Raveendran, M., Duraialaguraja, S., Sivakami, R., Pandian, B.A. et al. (2015). Analysis of Population Structure and Genetic Diversity in Rice Germplasm Using SSR Markers: An Initiative Towards Association Mapping of Agronomic Traits in Oryza sativa. Rice, 8(1),1–25 https://doi.org/10.1186/s12284-015-0062-5 DOI: https://doi.org/10.1186/s12284-015-0062-5
Ndikuryayo, C., Ndayiragije, A.,Kilasi, N., & Kusolwa, P.(2022) Breeding for Rice Aroma and Drought Tolerance: A Review. Agronomy, 12(7), 1726. DOI: https://doi.org/10.3390/agronomy12071726
Ogura, S., & Forwell, S.(2023). Responsibility as humans: meaning of traditional small grains cultivation in Japan. Ecology and Society, 28(1), 27. https://doi.org/10.5751/ES-13798-280127. DOI: https://doi.org/10.5751/ES-13798-280127
Oyanagi, A., Nakamoto, T., & Wada, M.( 1993). Relationship between root growth angle of seedlings and vertical distribution of roots in the field in wheat cultivars. Japanese Journal of Crop Science, 62, 565–570. DOI: https://doi.org/10.1626/jcs.62.565
Pawar, P., Krishnan, C., Hittalmani, S., Keshava Murthy, B.C., & Biradar,H. (2012). DNA Marker-Assisted Analysis of Recombinant Inbred Lines Using Trait-Specific Markers and Candidate Genes in Rice ( Oryza sativa L .). Genes, Genomes and Genomics, 6 (1), 48–51.
Pinta, W., Vorasoot, N, Jongrungklang, N., Saingliw,J.L.,Toojinda, T., Sanitchon, J. et al. (2018). Root responses in chromosome segment substitution lines of rice ‘KDML105’ under early drought stress. Chilean Journal of Agricultural Research, 78, 238–254. https://doi.org/10.4067/S0718-58392018000200238 DOI: https://doi.org/10.4067/S0718-58392018000200238
Rezvi, H.U.A., Tahjib-Ul-Arif, M., Azim, M.A., Tumpa, T.A., & Tipu, M.M.H. (2022). Rice and food security: Climate change implications and the future prospects for nutritional security. Food and Energy Security, 12, e430. DOI: https://doi.org/10.1002/fes3.430
Sabar, M., Shabir, G., Shah, S.M., Aslam, K., Naveed, S.A., & Arif, M. (2019). Identification and Mapping of QTLs associated with drought tolerance traits in rice by a cross between super Basmati and IR55419-04. Breeding Science, 69,169–178. https://doi.org/10.1270/jsbbs.18068 DOI: https://doi.org/10.1270/jsbbs.18068
Sandar, M.M., Ruangsiri, M., Chutteang, C., Arunyanark, A., Toojinda, T., & Siangliw, J.L.(2022). Root characterization of Myanmar upland and lowland rice in relation to agronomic and physiological traits under drought stress condition. Agronomy, 12(5),1230. DOI: https://doi.org/10.3390/agronomy12051230
Sandhu, N., Raman, K.A., Torres, R.O., Audebrt, A., Dardou, A., Kumar, A., & Henry,A. (2016). Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiology, 171, 2562–2576. https://doi.org/10.1104/pp.16.00705 DOI: https://doi.org/10.1104/pp.16.00705
Singh, B.K., Ramkumar, M.K., Dalal, M., Singh, A., Solanke, A.U., Singh, N.K., & Sevanthi, A.M. (2021). Allele mining for a drought responsive gene DRO1 determining root growth angle in donors of drought tolerance in rice (Oryza sativa L.). Physiolgy and Molecualr Biology of Plants, 27, 523–534. https://doi.org/10.1007/S12298-021-00950-2 DOI: https://doi.org/10.1007/s12298-021-00950-2
Subudhi, P.K., De Leon, T., Singh, P.K., Parco, A., Cohn, M.A., & Sasaki, T. (2015). A chromosome segment substitution library of weedy rice for genetic dissection of complex agronomic and domestication traits. PLoS One, 10(6),1–22. https://doi.org/10.1371/journal.pone.0130650 DOI: https://doi.org/10.1371/journal.pone.0130650
Suralta, R.R., & Yamauchi, A (2008). Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environmental and Experimental Botany, 64(1), 75–82. https://doi.org/10.1016/j.envexpbot.2008.01.004 DOI: https://doi.org/10.1016/j.envexpbot.2008.01.004
Suralta, R.R., Inukai, Y., & Yamauchi, A. (2010). Dry matter production in relation to root plastic development, oxygen transport, and water uptake of rice under transient soil moisture stresses. Plant and Soil, 332, 87–104. https://doi.org/10.1007/ s11104-009-0275-8 DOI: https://doi.org/10.1007/s11104-009-0275-8
Swamy, BP.M., Ahmed, H.U., Henry, A., Mauleon, R., Dixit, S., et al. (2013). Genetic, Physiological, and Gene Expression Analyses Reveal That Multiple QTL Enhance Yield of Rice Mega-Variety IR64 under Drought. PLoS One, 8,1–11. https://doi.org/10.1371/journal.pone.0062795 DOI: https://doi.org/10.1371/journal.pone.0062795
Toorchi, M., Shashidhar, H.E., Hittalmani, S., & Gireesha, T.M. (2002). Rice root morphology under contrasting moisture regimes and contribution of molecular marker heterozygosity. Euphytica, 126, 251–257. https://doi.org/10.1023/A:1016317906963 DOI: https://doi.org/10.1023/A:1016317906963
Toulotte, J.M., Pantazopoulou, C.K., Sanclemente, M.A., Voesenek, L.A., & Sasidharan, R. (2022). Water stress resilient cereal crops: Lessons from wild relatives. Journal of Integrative Plant Biology, 64(2), 412-30. DOI: https://doi.org/10.1111/jipb.13222
Uga, Y., Kitomi, Y., Yamamoto, E., Kannon, N., Kawi, S., Mizubayashi, T., & Fukuoka, S. (2015). A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice, 8(1), https://doi.org/10.1186/s12284-015-0044-7 DOI: https://doi.org/10.1186/s12284-015-0044-7
Uga, Y., Okuno, K., & Yano, M. (2011). Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 62(8),2485–2494. https://doi.org/10.1093/jxb/erq429 DOI: https://doi.org/10.1093/jxb/erq429
Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M. et al (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature genetics, 45(9), 1097–1102. https://doi.org/10.1038/ng.2725. DOI: https://doi.org/10.1038/ng.2725
Vallarino, J. G., Jun, H., Wang, S., Wang, X., Sade, N., et al.(2023). Limitations and advantages of using metabolite-based genome-wide association studies: Focus on fruit quality traits. Plant Science, 111748. DOI: https://doi.org/10.1016/j.plantsci.2023.111748
Vaughan, D.A., Morishima, H., & Kadowaki, K. (2003). Diversity in the Oryza genus. Current Opinion in Plant Biology, 6(2), 139–146. https://doi.org/10.1016/S1369-5266(03) 00009-8 DOI: https://doi.org/10.1016/S1369-5266(03)00009-8
Venkateshwarlu, C., Kole, P.C., Paul, P.J., Singh, A.K., Singh, V.K., & Kumar, A. (2022) Capturing genetic variability and identification of promising drought-tolerant lines in exotic landrace derived population under reproductive drought stress in rice. Frontiers in Plant Science, 13,115. DOI: https://doi.org/10.3389/fpls.2022.814774
Vikram, P., Swamy. B.P.M., Dixit, S.S.R., Singh, R.et al. (2015). Drought susceptibility of modern rice varieties: An effect of linkage of drought tolerance with undesirable traits. Scientific Reports, 13,14799. https://doi.org/10.1038/srep14799 DOI: https://doi.org/10.1038/srep14799
Voetberg, G.S., & Sharp, R.E. (1991). Growth of the Maize Primary Root at Low Water Potentials:III. Plant Physiology 96, 1125–1130. https://doi.org/10.1104/pp.96.4.1125 DOI: https://doi.org/10.1104/pp.96.4.1125
Wasson, A.P., Richards, R.A., Chatrath, R., Misra, S.C., Prasad, S.S. et al. (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 63(9), 3485–3498. https://doi.org/10.1093/ jxb/ers111 DOI: https://doi.org/10.1093/jxb/ers111
Yoshida, Y., Joiner, J., Tucker, C., Berry, J., Lee, J.E., et al. (2015) .The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence: Insights from modeling and comparisons with parameters derived from satellite reflectances. Remote Sensing of Environment, 166,163–167. https://doi.org/10.1016/j.rse.2015.06.008 DOI: https://doi.org/10.1016/j.rse.2015.06.008
Yue, B., Xue, W., Xiong, L.,Yu, X., Luo, L. et al. (2006). Genetic basis of drought resistance at reproductive stage in rice: Separation of drought tolerance from drought avoidance. Genetics, 172, 1213–1228. https://doi.org/10.1534/genetics.105.045062 DOI: https://doi.org/10.1534/genetics.105.045062
Zampieri, E., Pesenti, M., Nocito, F.F., Sacchi, G.A. & Valè G.(2023) Rice Responses to Water Limiting Conditions: Improving Stress Management by Exploiting Genetics and Physiological Processes. Agriculture, 13(2), 464. DOI: https://doi.org/10.3390/agriculture13020464
Zhao, W.G., Chung, J.W., Kwon, S.W., Lee, J.H., Ma, KH, & Park, Y.J.(2013). Association analysis of physicochemical traits on eating quality in rice (Oryza sativa L.). Euphytica, 191, 9–21. https://doi.org/10.1007/s10681-012-0820-z DOI: https://doi.org/10.1007/s10681-012-0820-z
Zhao, N., Yuan, R., Usman, B., Qin, J., Yang, J., et al. (2022).
Detection of QTLs Regulating Six Agronomic Traits of Rice Based on Chromosome Segment Substitution Lines of Common Wild Rice (Oryzaru fipogon Griff.) and mapping of qPH1.1 and qLMC6. 1. Biomolecules, 12(12), 1850. DOI: https://doi.org/10.3390/biom12121850
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.