Pluronic F-127 hydrogel for stem cell research: a bibliometric analysis using Scopus database
DOI:
https://doi.org/10.18006/2023.11(3).612.624Keywords:
Pluronic F-127, Tissue engineering, Thermoresponsive hydrogel, Mesenchymal stem cells, Encapsulation, Regenerative medicineAbstract
Stem cell research holds immense promise in regenerative medicine. However, the successful utilization of stem cells relies on their inherent properties and the appropriate support matrix that provides an optimal environment for growth and differentiation. Optimizing their delivery and retention at the target site is crucial to enhance stem cell-based therapies' effectiveness. In recent years, hydrogels have emerged as a popular choice for culturing and delivering stem cells due to their unique properties, including biocompatibility, tunable physical and chemical characteristics, and mimicking the native extracellular matrix. Among the various hydrogels available, Pluronic F-127 (PF-127) has gained significant attention in stem cell research. This paper aims to study the publication trends of research that discuss the utilization of PF-127 hydrogel for stem cell research. The analysis is based on data extracted from the Scopus database using bibliometric methods. The results revealed the publication trends, collaboration patterns among authors and institutions, research areas, influential journals, funding agencies, and thematic connections in this field. By understanding the current state of research and identifying key areas of focus, this analysis provides valuable insights for researchers and practitioners interested in harnessing the potential of PF-127 hydrogel in regenerative medicine and tissue engineering.
References
Argibay, B., Trekker, J., Himmelreich, U., Beiras, A., Topete, A., Taboada, P., Pérez-Mato, M., Iglesias-Rey, R., Sobrino, T., Rivas, J., Campos, F., & Castillo, J. (2016). Easy and Efficient Cell Tagging with Block Copolymer-Based Contrast Agents for Sensitive MRI Detection in Vivo. Cell Transplantation, 25(10), 1787–1800. https://doi.org/10.3727/096368916X691303 DOI: https://doi.org/10.3727/096368916X691303
Aria, M., & Cuccurullo, C. (2017). bibliometrix: an R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4): 959–975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007
Bae, S. E., Choi, D. H., Han, D. K., & Park, K. (2010). Effect of temporally controlled release of dexamethasone on in vivo chondrogenic differentiation of mesenchymal stromal cells. Journal of Controlled Release, 143(1), 23–30. https://doi.org/10.1016/j.jconrel.2009.12.024 DOI: https://doi.org/10.1016/j.jconrel.2009.12.024
Bist, D., Pawde, A. M., Amarpal, Kinjavdekar, P., Mukherjee, R., Singh, K. P., Verma, M. R., Sharun, K., Kumar, A., Dubey, P. K., Mohan, D., Verma, A., & Sharma, G. T. (2021). Evaluation of canine bone marrow-derived mesenchymal stem cells for experimental full-thickness cutaneous wounds in a diabetic rat model. Expert Opinion on Biological Therapy, 21(12), 1655–1664. https://doi.org/10.1080/14712598.2022.1990260 DOI: https://doi.org/10.1080/14712598.2022.1990260
Chen, D., & Jiang, X. (2021). Effect of Kartogenin/Pluronic F127 micelles on osteogenic differentiation of bone marrow mesenchymal stem cells. Chinese Journal of Tissue Engineering Research, 25(34), 5473.
Curley, C. J., Dolan, E. B., Cavanagh, B., O'Sullivan, J., Duffy, G. P., & Murphy, B. P. (2017). An in vitro investigation to assess procedure parameters for injecting therapeutic hydrogels into the myocardium. Journal of Biomedical Materials Research, Part B, Applied biomaterials, 105(8), 2618–2629. https://doi.org/10.1002/ jbm.b.33802 DOI: https://doi.org/10.1002/jbm.b.33802
Díaz-Rodríguez, P., Rey-Rico, A., Madry, H., Landin, M., & Cucchiarini, M. (2015). Effective genetic modification and differentiation of hMSCs upon controlled release of rAAV vectors using alginate/poloxamer composite systems. International Journal of Pharmaceutics, 496(2), 614–626. https://doi.org/10.1016/j.ijpharm.2015.11.008 DOI: https://doi.org/10.1016/j.ijpharm.2015.11.008
Diniz, I. M., Chen, C., Xu, X., Ansari, S., Zadeh, H. H., Marques, M. M., Shi, S., & Moshaverinia, A. (2015). Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 26(3), 153. https://doi.org/10.1007/s10856-015-5493-4 DOI: https://doi.org/10.1007/s10856-015-5493-4
García-Couce, J., Tomás, M., Fuentes, G., Que, I., Almirall, A., & Cruz, L. J. (2022). Chitosan/Pluronic F127 Thermosensitive Hydrogel as an Injectable Dexamethasone Delivery Carrier. Gels, 8(1), 44. https://doi.org/10.3390/gels8010044 DOI: https://doi.org/10.3390/gels8010044
Gettler, B. C., Zakhari, J. S., Gandhi, P. S., & Williams, S. K. (2017). Formation of Adipose Stromal Vascular Fraction Cell-Laden Spheroids Using a Three-Dimensional Bioprinter and Superhydrophobic Surfaces. Tissue Engineering: Part C, Methods, 23(9), 516–524. https://doi.org/10.1089/ten.TEC.2017.0056 DOI: https://doi.org/10.1089/ten.tec.2017.0056
Hou, Y., Lu, C., Dou, M., Zhang, C., Chang, H., Liu, J., & Rao, W. (2020). Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation. Acta Biomaterialia, 102, 403–415. https://doi.org/10.1016/j.actbio.2019.11.023 DOI: https://doi.org/10.1016/j.actbio.2019.11.023
Kang, M. L., Kim, J. E., & Im, G. I. (2016). Thermoresponsive nanospheres with independent dual drug release profiles for the treatment of osteoarthritis. Acta Biomaterialia, 39, 65–78. https://doi.org/10.1016/j.actbio.2016.05.005 DOI: https://doi.org/10.1016/j.actbio.2016.05.005
Kim, T. H., Oh, S. H., Chun, S. Y., & Lee, J. H. (2014). Bone morphogenetic proteins-immobilized polydioxanone porous particles as an artificial bone graft. Journal of Biomedical Materials Research: Part A, 102(5), 1264–1274. https://doi.org/10.1002/jbm.a.34803 DOI: https://doi.org/10.1002/jbm.a.34803
Lee, J. H., Baek, H. R., Lee, K. M., Lee, H. K., Im, S. B., Kim, Y. S., Lee, J. H., Chang, B. S., & Lee, C. K. (2014). The effect of poloxamer 407-based hydrogel on the osteoinductivity of demineralized bone matrix. Clinics in Orthopedic Surgery, 6(4), 455–461. https://doi.org/10.4055/cios.2014.6.4.455 DOI: https://doi.org/10.4055/cios.2014.6.4.455
Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O., Pham, H. M., & Tran, S. D. (2019). Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials, 12(20), 3323. https://doi.org/10.3390/ma12203323 DOI: https://doi.org/10.3390/ma12203323
Peer, B. A., Bhat, A. R., Shabir, U., Bharti, M. K., Bhat, I. A., Pandey, S., Sharun, K., Kumar, R., Mathesh, K., Saikumar, G., Chandra, V., Amarpal, & Sharma, G. T. (2022). Comparative evaluation of fracture healing potential of differentiated and undifferentiated guinea pig and canine bone marrow-derived mesenchymal stem cells in a guinea pig model. Tissue & Cell, 76, 101768. https://doi.org/10.1016/j.tice.2022.101768 DOI: https://doi.org/10.1016/j.tice.2022.101768
Qutachi, O., Wright, E. J., Bray, G., Hamid, O. A., Rose, F. R. A. J., Shakesheff, K. M., & Delcassian, D. (2018). Improved delivery of PLGA microparticles and microparticle-cell scaffolds in clinical needle gauges using modified viscosity formulations. International Journal of Pharmaceutics, 546(1-2), 272–278. https://doi.org/10.1016/j.ijpharm.2018.05.025 DOI: https://doi.org/10.1016/j.ijpharm.2018.05.025
Seol, D., Magnetta, M. J., Ramakrishnan, P. S., Kurriger, G. L., Choe, H., Jang, K., Martin, J. A., & Lim, T. H. (2013). Biocompatibility and preclinical feasibility tests of a temperature-sensitive hydrogel for the purpose of surgical wound pain control and cartilage repair. Journal of Biomedical Materials Research: Part B, Applied Biomaterials, 101(8), 1508–1515. https://doi.org/10.1002/jbm.b.32981 DOI: https://doi.org/10.1002/jbm.b.32981
Sharun, K., Chandran, D., Jambagi, K., Kumar, R., & Pawde, A. M. (2022b). Mapping Global Trends in Canine Platelet-Rich Plasma Research: A Bibliometric Analysis Using Scopus Database. The Indian Veterinary Journal, 99(05), 27-35.
Sharun, K., Kumar, R., Chandra, V., Saxena, A. C., Pawde, A. M., Kinjavdekar, P., Dhama, K., Amarpal, & Sharma, G. T. (2021). Percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells for the management of paraplegia secondary to Hansen type I intervertebral disc herniation in a Beagle dog. Iranian Journal of Veterinary Research, 22(2), 161–166. https://doi.org/10.22099/ijvr.2021.38613.5620
Sharun, K., Musa, T. H., Musa, H. H., Kumar, R., Pawde, A. M., Chandra, V., Tuli, H. S., Dhama, K., Amarpal, & Sharma, G. T. (2022a). Mapping global trends in adipose-derived mesenchymal stem cell research: A bibliometric analysis using scopus database. Annals of Medicine and Surgery, 77, 103542. https://doi.org/10.1016/j.amsu.2022.103542 DOI: https://doi.org/10.1016/j.amsu.2022.103542
Sharun, K., Nair, S. S., Banu, S. A., Manjusha, K. M., Jayakumar, V., Saini, S., & Pal, A. (2023). In vitro Antimicrobial Properties of Pluronic F-127 Injectable Thermoresponsive Hydrogel. Journal of Pure & Applied Microbiology, 17(2),1231-1237. DOI: https://doi.org/10.22207/JPAM.17.2.54
Sharun, K., Rawat, T., Kumar, R., Chandra, V., Saxena, A. C., Pawde, A. M., Kinjavdekar, P., Amarpal, & Sharma, G. T. (2020). Clinical evaluation following the percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells (aBM-MSC) in dogs affected by vertebral compression fracture. Veterinary and Animal Science, 10, 100152. https://doi.org/10.1016/j.vas.2020.100152 DOI: https://doi.org/10.1016/j.vas.2020.100152
Silva, A. K. A., Perretta, S., Perrod, G., Pidial, L., Lindner, V., Carn, F., Lemieux, S., Alloyeau, D., Boucenna, I., Menasché, P., Dallemagne, B., Gazeau, F., Wilhelm, C., Cellier, C., Clément, O., & Rahmi, G. (2018). Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy. ACS Nano, 12(10), 9800–9814. https://doi.org/10.1021/ acsnano.8b00117 DOI: https://doi.org/10.1021/acsnano.8b00117
Sivanarayanan, T. B., Bhat, I. A., Sharun, K., Palakkara, S., Singh, R., Remya, Parmar, M. S., Bhardwaj, R., Chandra, V., Munuswamy, P., Kinjavdekar, P., Pawde, A. M., Amarpal, & Sharma, G. T. (2023). Allogenic bone marrow-derived mesenchymal stem cells and its conditioned media for repairing acute and sub-acute peripheral nerve injuries in a rabbit model. Tissue & Cell, 82, 102053. https://doi.org/10.1016/ j.tice.2023.102053 DOI: https://doi.org/10.1016/j.tice.2023.102053
Tsou, Y. H., Khoneisser, J., Huang, P. C., & Xu, X. (2016). Hydrogel as a bioactive material to regulate stem cell fate. Bioactive Materials, 1(1), 39–55. https://doi.org/10.1016/ j.bioactmat.2016.05.001 DOI: https://doi.org/10.1016/j.bioactmat.2016.05.001
Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3 DOI: https://doi.org/10.1007/s11192-009-0146-3
Yan, L., Yongge, G., Yang, S., Yue, L. (2022). Hydrogel combined with bone marrow mesenchymal stem cells in the treatment of damaged endometrium in rats. Chinese Journal of Tissue Engineering Research, 26(31): 4940-4945.doi: https://doi.org/10.12307/2022.776
Yang, H., Wu, S., Feng, R., Huang, J., Liu, L., Liu, F., & Chen, Y. (2017). Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats. Stem Cell Research &Therapy, 8(1), 267. https://doi.org/10.1186/s13287-017-0718-8 DOI: https://doi.org/10.1186/s13287-017-0718-8
Youn, J., Choi, J. H., Lee, S., Lee, S. W., Moon, B. K., Song, J. E., & Khang, G. (2021). Pluronic F-127/Silk Fibroin for Enhanced Mechanical Property and Sustained Release Drug for Tissue Engineering Biomaterial. Materials, 14(5), 1287. https://doi.org/ 10.3390/ma14051287 DOI: https://doi.org/10.3390/ma14051287
Zhou, N., Huang, X., Jiang, X., Song, J., Li, H., & Xie, Q. (2013). Experimental study on transplantation of bone morphogenetic protein-2 gene transfected bone mesenchymal stem cells compounded with Pluronic F-127 for promoting bone regeneration in rabbit mandibular distraction.West China Journal of Stomatology, 31(3), 247–252.
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.