Colistin the last resort drug in 21st century antibiotics to combat Multidrug resistance superbugs

Authors

DOI:

https://doi.org/10.18006/2023.11(6).919.929

Keywords:

Polymyxin E, MDR, Antimicrobial Resistance, Drug repurposing

Abstract

Polymyxin' E' (Colistin) is considered the last resort therapy against Multidrug resistance (MDR) bacteria, mainly Klebsiella peumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli and play a critical role in causing life-threatening infection, and their prevalence is increasing as a big concern globally. Apart from immunological adaptation, chromosomal mutations and plasmid-mediated genes are mostly associated with this resistance at the molecular level. Therefore, the current review extensively focused on Colistin as a drug in 21st-century antibiotics, the activities spectrum with diverse resistance mechanisms of bacteria against Colistin, and emerging approaches of Colistin from discovery to tackling MDR. In the study, we got to know about the challenges and new developments with old weapons like phage therapy as well as new approaches like Phage display and drug repurposing, in addition to the chromosomal and plasmid-mediated genes that play a role in antimicrobial resistance (AMR). The present study would provide insight into the prognostic aspect of combating MDR.

References

Abavisani, M., Goudarzi, M., Ghalavand, Z., Hajikhani, B., Rad, Z. R., Rad, Z. R., & Hashemi, A. (2021). Evaluation of efflux pumps overexpression and β-lactamase genes among Colistin resistant Pseudomonas aeruginosa. Gene Reports, 24. https://doi.org/10.1016/j.genrep.2021.101301 DOI: https://doi.org/10.1016/j.genrep.2021.101301

AbuOun, M., Stubberfield, E. J., Duggett, N. A., Kirchner, M., Dormer, L., et al. (2018). mcr-1 and mcr-2 (mcr-6.1) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. Journal of Antimicrobial Chemotherapy, 73(10). https://doi.org/10.1093/jac/dky272 DOI: https://doi.org/10.1093/jac/dky272

Abushaheen, M. A., Muzaheed, Fatani, A. J., Alosaimi, M., Mansy, W., et al. (2020). Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-month, 66(6), 100971. https://doi.org/10.1016/j.disamonth.2020.100971 DOI: https://doi.org/10.1016/j.disamonth.2020.100971

Aghapour, Z., Hasani, A., Aghazadeh, M., Rezaee, M. A., Ganbarov, K., et al. (2019). Genes involved in colistin resistance of gram-negative isolates in the northwest of Iran. Gene Reports, 14. https://doi.org/10.1016/j.genrep.2018.12.001 DOI: https://doi.org/10.1016/j.genrep.2018.12.001

Al-Bayssari, C., Dagher, T. N., El Hamoui, S., Fenianos, F., Makdissy, N., Rolain, J. M., & Nasreddine, N. (2021). Carbapenem and colistin-resistant bacteria in North Lebanon: Coexistence of mcr-1 and NDM-4 genes in Escherichia coli. Journal of Infection in Developing Countries, 15(7). https://doi.org/10.3855/jidc.14176 DOI: https://doi.org/10.3855/jidc.14176

Andre, E., Lebecque, P., Simon, A., & Huang, T. D. (2010). Evaluation of chromogenic and selective media for the detection of Pseudomonas aeruginosa and Staphylococcus aureus in respiratory samples from cystic fibrosis patients. 20th European Congress of Clinical Microbiology and Infectious Diseases (Vienne, Autriche, du 10/4/2010 au 13/04/2010). http://hdl.handle.net/2078/123078.

Anyanwu, M. U., Jaja, I. F., & Nwobi, O. C. (2020). Occurrence and characteristics of mobile colistin resistance (Mcr) gene-containing isolates from the environment: A review. International Journal of Environmental Research and Public Health, 17 (3), 1028. https://doi.org/10.3390/ijerph17031028 DOI: https://doi.org/10.3390/ijerph17031028

Ara, B., Urmi, U. L., Haque, T. A., Nahar, S., Rumnaz, A., et al. (2021). Detection of mobile colistin-resistance gene variants (mcr-1 and mcr-2) in urinary tract pathogens in Bangladesh: the last resort of infectious disease management colistin efficacy is under threat. Expert Review of Clinical Pharmacology, 14(4), 513-512. https://doi.org/10.1080/17512433.2021.1901577 DOI: https://doi.org/10.1080/17512433.2021.1901577

Ayerbe-Algaba, R., Gil-Marqués, M. L., Jiménez-Mejías, M. E., Sánchez-Encinales, V., Parra-Millán, R., et al. (2018). Synergistic Activity of Niclosamide in Combination With Colistin Against Colistin-Susceptible and Colistin-Resistant Acinetobacter baumannii and Klebsiella pneumoniae. Frontiers in cellular and infection microbiology, 8, 348. https://doi.org/10.3389/ fcimb.2018.00348 DOI: https://doi.org/10.3389/fcimb.2018.00348

Ayoub Moubareck, C. (2020). Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. Membranes, 10(8), 181. https://doi.org/10.3390/ membranes10080181 DOI: https://doi.org/10.3390/membranes10080181

Bai, L., Wang, J., Hurley, D., Yu, Z., Wang, L., et al. (2017). A novel disrupted mcr-1 gene and a lysogenized phage P1-like sequence detected from a large conjugative plasmid, cultured from a human atypical enteropathogenic Escherichia coli (aEPEC) recovered in China. The Journal of antimicrobial chemotherapy, 72(5), 1531–1533. https://doi.org/10.1093/jac/dkw564 DOI: https://doi.org/10.1093/jac/dkw564

Bialvaei, A. Z., & Samadi Kafil, H. (2015). Colistin, mechanisms and prevalence of resistance. Current Medical Research and Opinion, 31 (4), 707-721. https://doi.org/10.1185/ 03007995.2015.1018989 DOI: https://doi.org/10.1185/03007995.2015.1018989

Biswas, S., Brunel, J. M., Dubus, J. C., Reynaud-Gaubert, M., & Rolain, J. M. (2012). Colistin: an update on the antibiotic of the 21st century. Expert review of anti-infective therapy, 10(8), 917–934. https://doi.org/10.1586/eri.12.78 DOI: https://doi.org/10.1586/eri.12.78

Borowiak, M., Hammerl, J. A., Deneke, C., Fischer, J., Szabo, I., & Malorny, B. (2019). Characterization of mcr-5-Harboring Salmonella enterica subsp. enterica Serovar Typhimurium Isolates from Animal and Food Origin in Germany. Antimicrobial agents and chemotherapy, 63(6), e00063-19. https://doi.org/10.1128/ AAC.00063-19 DOI: https://doi.org/10.1128/AAC.00063-19

Breazeale, S. D., Ribeiro, A. A., McClerren, A. L., & Raetz, C. R. (2005). A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-Amino-4-deoxy-L-arabinose. Identification and function oF UDP-4-deoxy-4-formamido-L-arabinose. The Journal of biological chemistry, 280(14), 14154–14167. https://doi.org/10.1074/jbc.M414265200 DOI: https://doi.org/10.1074/jbc.M414265200

Brennan-Krohn, T., Pironti, A., & Kirby, J. E. (2018). Synergistic Activity of Colistin-Containing Combinations against Colistin-Resistant Enterobacteriaceae. Antimicrobial agents and chemotherapy, 62(10), e00873-18. https://doi.org/10.1128/ AAC.00873-18 DOI: https://doi.org/10.1128/AAC.00873-18

Campos, M. A., Vargas, M. A., Regueiro, V., Llompart, C. M., Albertí, S., & Bengoechea, J. A. (2004). Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infection and immunity, 72(12), 7107–7114. https://doi.org/10.1128/ IAI.72.12.7107-7114.2004 DOI: https://doi.org/10.1128/IAI.72.12.7107-7114.2004

Cannatelli, A., Di Pilato, V., Giani, T., Arena, F., Ambretti, S., et al. (2014). In vivo evolution to colistin resistance by PmrB sensor kinase mutation in KPC-producing Klebsiella pneumoniae is associated with low-dosage colistin treatment. Antimicrobial agents and chemotherapy, 58(8), 4399–4403. https://doi.org/10.1128/AAC.02555-14 DOI: https://doi.org/10.1128/AAC.02555-14

Carattoli, A., Villa, L., Feudi, C., Curcio, L., Orsini, S., et al. (2017). Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 22(31), 30589. https://doi.org/10.2807/1560-7917.ES.2017.22.31.30589 DOI: https://doi.org/10.2807/1560-7917.ES.2017.22.31.30589

Carroll, L. M., Gaballa, A., Guldimann, C., Sullivan, G., Henderson, L. O., & Wiedmann, M. (2019). Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. mBio, 10(3), e00853-19. https://doi.org/10.1128/mBio.00853-19 DOI: https://doi.org/10.1128/mBio.00853-19

Chala, B., & Hamde, F. (2021). Emerging and Re-emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Frontiers in public health, 9, 715759. https://doi.org/10.3389/fpubh.2021.715759 DOI: https://doi.org/10.3389/fpubh.2021.715759

Chambers, J. R., & Sauer, K. (2013). The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to Colistin by repressing PhoPQ. Journal of bacteriology, 195(20), 4678–4688. https://doi.org/10.1128/JB.00834-13 DOI: https://doi.org/10.1128/JB.00834-13

Chiu, S., Hancock, A. M., Schofner, B. W., Sniezek, K. J., Soto-Echevarria, N., Leon, G., Sivaloganathan, D. M., Wan, X., & Brynildsen, M. P. (2022). Causes of polymyxin treatment failure and new derivatives to fill the gap. The Journal of antibiotics, 75(11), 593–609. https://doi.org/10.1038/s41429-022-00561-3 DOI: https://doi.org/10.1038/s41429-022-00561-3

Chow, W. A., Jiang, C., & Guan, M. (2009). Anti-HIV drugs for cancer therapeutics: back to the future?. The Lancet Oncology, 10(1), 61–71. https://doi.org/10.1016/S1470-2045(08)70334-6 DOI: https://doi.org/10.1016/S1470-2045(08)70334-6

Conrad, R. S., & Galanos, C. (1989). Fatty acid alterations and polymyxin B binding by lipopolysaccharides from Pseudomonas aeruginosa adapted to polymyxin B resistance. Antimicrobial agents and chemotherapy, 33(10), 1724–1728. https://doi.org/10.1128/AAC.33.10.1724 DOI: https://doi.org/10.1128/AAC.33.10.1724

Conway, S. P., Pond, M. N., Watson, A., Etherington, C., Robey, H. L., & Goldman, M. H. (1997). Intravenous colistin sulphomethate in acute respiratory exacerbations in adult patients with cystic fibrosis. Thorax, 52(11), 987–993. https://doi.org/10.1136/thx.52.11.987 DOI: https://doi.org/10.1136/thx.52.11.987

Dalmolin, T., Lima-Morales, D., & Barth, A. (2018). Plasmid-mediated Colistin Resistance: What Do We Know? Journal of Infectiology, 1(2). https://doi.org/10.29245/2689-9981/2018/2.1109 DOI: https://doi.org/10.29245/2689-9981/2018/2.1109

Deekshit, V. K., Maiti, B., Krishna Kumar, B., Kotian, A., Pinto, G., et al. (2023). Antimicrobial resistance in fish pathogens and alternative risk mitigation strategies. Reviews in Aquaculture, 15(1), 261-273. https://doi.org/10.1111/raq.12715. DOI: https://doi.org/10.1111/raq.12715

Deris Z. Z. (2015). The Multidrug-Resistant Gram-negative Superbugs Threat Require Intelligent Use of the Last Weapon. The Malaysian journal of medical sciences: MJMS, 22(5), 1–6.

Doumith, M., Godbole, G., Ashton, P., Larkin, L., Dallman, T., et al. (2016). Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. The Journal of antimicrobial chemotherapy, 71(8), 2300–2305. https://doi.org/10.1093/jac/dkw093 DOI: https://doi.org/10.1093/jac/dkw093

Durante-Mangoni, E., Grammatikos, A., Utili, R., & Falagas, M. E. (2009). Do we still need the aminoglycosides?. International journal of antimicrobial agents, 33(3), 201–205. https://doi.org/10.1016/j.ijantimicag.2008.09.001 DOI: https://doi.org/10.1016/j.ijantimicag.2008.09.001

Falagas, M. E., & Kasiakou, S. K. (2005). Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 40(9), 1333–1341. https://doi.org/10.1086/429323 DOI: https://doi.org/10.1086/429323

Giamarellou, H., & Poulakou, G. (2009). Multidrug-resistant Gram-negative infections: what are the treatment options?. Drugs, 69(14), 1879–1901. https://doi.org/10.2165/11315690-000000000-00000 DOI: https://doi.org/10.2165/11315690-000000000-00000

Giannella, M., Verardi, S., Karas, A., Abdel Hadi, H., Dupont, H., et al. (2023). Carbapenem-resistant Acinetobacter spp infection in critically ill patients with limited treatment options: a descriptive study of cefiderocol therapy during the COVID-19 pandemic. Open Forum Infectious Diseases, 10 (7), DOI:10.1093/ofid/ofad329. DOI: https://doi.org/10.1093/ofid/ofad329

Giurazza, R., Mazza, M. C., Andini, R., Sansone, P., Pace, M. C., & Durante-Mangoni, E. (2021). Emerging Treatment Options for Multi-Drug-Resistant Bacterial Infections. Life (Basel, Switzerland), 11(6), 519. https://doi.org/10.3390/life11060519 DOI: https://doi.org/10.3390/life11060519

Hassan, J., El-Gemayel, L., Bashour, I., & Kassem, I. I. (2019). On the edge of a precipice: The global emergence and dissemination of plasmid-borne mcr genes that confer resistance to Colistin, a last-resort antibiotic. In M. Z. Hashmi (Eds) Antibiotics and Antimicrobial Resistance Genes in the Environment: Volume 1 in the Advances in Environmental Pollution Research Series (pp. 155-182). Elsevier publication, https://doi.org/10.1016/B978-0-12-818882-8.00010-3 DOI: https://doi.org/10.1016/B978-0-12-818882-8.00010-3

Karakonstantis S. (2021). A systematic review of implications, mechanisms, and stability of in vivo emergent resistance to Colistin and tigecycline in Acinetobacter baumannii. Journal of chemotherapy (Florence, Italy), 33(1), 1–11. https://doi.org/10.1080/1120009X.2020.1794393 DOI: https://doi.org/10.1080/1120009X.2020.1794393

Kaur, S. P., Rao, R., & Nanda, S. (2011). Amoxicillin: A broad spectrum antibiotic. International Journal of Pharmacy and Pharmaceutical Sciences, 3 (3), 30-37.

Koike, M., Iida, K., & Matsuo, T. (1969). Electron microscopic studies on mode of action of polymyxin. Journal of bacteriology, 97(1), 448–452. https://doi.org/10.1128/jb.97.1.448-452.1969 DOI: https://doi.org/10.1128/jb.97.1.448-452.1969

Landman, D., Georgescu, C., Martin, D. A., & Quale, J. (2008). Polymyxins revisited. Clinical Microbiology Reviews, 21 (3), 449-465. https://doi.org/10.1128/CMR.00006-08 DOI: https://doi.org/10.1128/CMR.00006-08

Li, J., Nation, R. L., Turnidge, J. D., Milne, R. W., Coulthard, K., Rayner, C. R., & Paterson, D. L. (2006). Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. The Lancet. Infectious diseases, 6(9), 589–601. https://doi.org/10.1016/S1473-3099(06)70580-1 DOI: https://doi.org/10.1016/S1473-3099(06)70580-1

Lima, W. G., Alves, M. C., Cruz, W. S., & Paiva, M. C. (2018). Chromosomally encoded and plasmid-mediated polymyxins resistance in Acinetobacter baumannii: a huge public health threat. European Journal of Clinical Microbiology and Infectious Diseases, 37 (6), 1009-1019. https://doi.org/10.1007/s10096-018-3223-9 DOI: https://doi.org/10.1007/s10096-018-3223-9

Liu, H., Wang, H., Li, Q., Wang, Y., He, Y., et al. (2023). LPS adsorption and inflammation alleviation by polymyxin B-modified liposomes for atherosclerosis treatment. Acta pharmaceutica Sinica. B, 13(9), 3817–3833. https://doi.org/10.1016/j.apsb.2023.06.005

Liu, H., Wang, H., Li, Q., Wang, Y., He, Y., Li, X., Sun, C., Ergonul, O., Can, F., Pang, Z., Zhang, B., & Hu, Y. (2023). LPS adsorption and inflammation alleviation by polymyxin B-modified liposomes for atherosclerosis treatment. Acta PharmaceuticaSinica B, 13(9), 3817-3833. https://doi.org/10.1016/j.apsb.2023.06.005 DOI: https://doi.org/10.1016/j.apsb.2023.06.005

Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet. Infectious diseases, 16(2), 161–168. https://doi.org/10.1016/S1473-3099(15)00424-7 DOI: https://doi.org/10.1016/S1473-3099(15)00424-7

Llobet, E., Tomás, J. M., & Bengoechea, J. A. (2008). Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology (Reading, England), 154(Pt 12), 3877–3886. https://doi.org/10.1099/mic.0.2008/022301-0 DOI: https://doi.org/10.1099/mic.0.2008/022301-0

MacDougall, C. (2017). Protein synthesis inhibitors and miscellaneous antibacterial agents. R. Hilal-Dandan, & L.L. Brunton (Eds.), Goodman and Gilman's Manual of Pharmacology and Therapeutics, 2e. McGraw Hill. Retrieved from https://accesspharmacy.mhmedical.com/content.aspx?bookid=1810&sectionid=124496077.

Madhumanchi, S., Suedee, R., Kaewpiboon, S., Srichana, T., Khalil, R., & Ul-Haq, Z. (2020). Effect of sodium deoxycholate sulfate on outer membrane permeability and neutralization of bacterial lipopolysaccharides by polymyxin B formulations. International journal of pharmaceutics, 581, 119265. https://doi.org/10.1016/j.ijpharm.2020.119265 DOI: https://doi.org/10.1016/j.ijpharm.2020.119265

Mathy, V., Grohs, P., & Compain, F. (2018). In vitro activity of β-lactams in combination with avibactam against multidrug-resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Achromobacter xylosoxidans isolates from patients with cystic fibrosis. Journal of medical microbiology, 67(9), 1217–1220. https://doi.org/10.1099/jmm.0.000801 DOI: https://doi.org/10.1099/jmm.0.000801

Mazzitelli, M., Gregori, D., Sasset, L., Trevenzoli, M., Scaglione, V., et al. (2023). Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms, 11(4), 984. https://doi.org/10.3390/microorganisms11040984 DOI: https://doi.org/10.3390/microorganisms11040984

Michalopoulos, A. S., & Falagas, M. E. (2011). Colistin: recent data on pharmacodynamics properties and clinical efficacy in critically ill patients. Annals of intensive care, 1(1), 30. https://doi.org/10.1186/2110-5820-1-30 DOI: https://doi.org/10.1186/2110-5820-1-30

Michalopoulos, A. S., & Karatza, D. C. (2010). Multidrug-resistant Gram-negative infections: the use of Colistin. Expert review of anti-infective therapy, 8(9), 1009–1017. https://doi.org/10.1586/eri.10.88 DOI: https://doi.org/10.1586/eri.10.88

Navid, A., Ghim, C. M., Fenley, A. T., Yoon, S., Lee, S., & Almaas, E. (2009). Systems biology of microbial communities. Methods in molecular biology (Clifton, N.J.), 500, 469–494. https://doi.org/10.1007/978-1-59745-525-1_16 DOI: https://doi.org/10.1007/978-1-59745-525-1_16

Peirano, G., van der Bij, A. K., Freeman, J. L., Poirel, L., Nordmann, P., et al. (2014). Characteristics of Escherichia coli sequence type 131 isolates that produce extended-spectrum β-lactamases: global distribution of the H30-Rx sublineage. Antimicrobial agents and chemotherapy, 58(7), 3762–3767. https://doi.org/10.1128/AAC.02428-14 DOI: https://doi.org/10.1128/AAC.02428-14

Peyclit, L., Baron, S. A., Yousfi, H., & Rolain, J. M. (2018). Zidovudine: A salvage therapy for mcr-1 plasmid-mediated colistin-resistant bacterial infections?. International journal of antimicrobial agents, 52(1), 11–13. https://doi.org/10.1016/ j.ijantimicag.2018.03.012 DOI: https://doi.org/10.1016/j.ijantimicag.2018.03.012

Pham Thanh, D., Thanh Tuyen, H., Nguyen Thi Nguyen, T., Chung The, H., Wick, R. R., et al. (2016). Inducible colistin resistance via a disrupted plasmid-borne mcr-1 gene in a 2008 Vietnamese Shigella sonnei isolate. The Journal of antimicrobial chemotherapy, 71(8), 2314–2317. https://doi.org/10.1093/jac/dkw173 DOI: https://doi.org/10.1093/jac/dkw173

Poirel, L., Kieffer, N., Brink, A., Coetze, J., Jayol, A., & Nordmann, P. (2016). Genetic Features of MCR-1-Producing Colistin-Resistant Escherichia coli Isolates in South Africa. Antimicrobial agents and chemotherapy, 60(7), 4394–4397. https://doi.org/10.1128/AAC.00444-16 DOI: https://doi.org/10.1128/AAC.00444-16

Rajivgandhi, G., Muneeswaran, T., Maruthupandy, M., Ramakritinan, C. M., Saravanan, K., Ravikumar, V., & Manoharan, N. (2018). Antibacterial and anticancer potential of marine endophytic actinomycetes Streptomyces coeruleorubidus GRG 4 (KY457708) compound against Colistin resistant uropathogens and A549 lung cancer cells. Microbial pathogenesis, 125, 325–335. https://doi.org/10.1016/j.micpath.2018.09.025 DOI: https://doi.org/10.1016/j.micpath.2018.09.025

Sarkar, P., Yarlagadda, V., Ghosh, C., & Haldar, J. (2017). A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. MedChemComm, 8(3), 516–533. https://doi.org/10.1039/c6md00585c DOI: https://doi.org/10.1039/C6MD00585C

Sheng, Q., Hou, X., Wang, Y., Wang, N., Deng, X., Wen, Z., Li, D., Li, L., Zhou, Y., & Wang, J. (2022). Naringenin Microsphere as a Novel Adjuvant Reverses Colistin Resistance via Various Strategies against Multidrug-Resistant Klebsiella pneumoniae Infection. Journal of Agricultural and Food Chemistry, 70(51), 16201-16217. https://doi.org/10.1021/acs.jafc.2c06615 DOI: https://doi.org/10.1021/acs.jafc.2c06615

Slingerland, C. J., Kotsogianni, I., Wesseling, C. M. J., & Martin, N. I. (2022). Polymyxin Stereochemistry and Its Role in Antibacterial Activity and Outer Membrane Disruption. ACS infectious diseases, 8(12), 2396–2404. https://doi.org/10.1021/ acsinfecdis.2c00307 DOI: https://doi.org/10.1021/acsinfecdis.2c00307

Snesrud, E., He, S., Chandler, M., Dekker, J. P., Hickman, A. B., McGann, P., & Dyda, F. (2016). A Model for Transposition of the Colistin Resistance Gene mcr-1 by ISApl1. Antimicrobial agents and chemotherapy, 60(11), 6973–6976. https://doi.org/10.1128/ AAC.01457-16 DOI: https://doi.org/10.1128/AAC.01457-16

Srinivasan, V. B., & Rajamohan, G. (2013). KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrobial agents and chemotherapy, 57(9), 4449–4462. https://doi.org/10.1128/ AAC.02284-12 DOI: https://doi.org/10.1128/AAC.02284-12

Tan, S. Y., & Tatsumura, Y. (2015). Alexander Fleming (1881–1955): Discoverer of penicillin. Singapore Medical Journal, 56 (7), 366-367. https://doi.org/10.11622/smedj.2015105 DOI: https://doi.org/10.11622/smedj.2015105

Thangamani, S., Mohammad, H., Abushahba, M. F., Hamed, M. I., Sobreira, T. J., Hedrick, V. E., Paul, L. N., & Seleem, M. N. (2015). Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Scientific reports, 5, 16407. https://doi.org/10.1038/srep16407 DOI: https://doi.org/10.1038/srep16407

Timmermans, M., Wattiau, P., Denis, O., & Boland, C. (2021). Colistin resistance genes mcr-1 to mcr-5, including a case of triple occurrence (mcr-1, -3 and -5), in Escherichia coli isolates from faeces of healthy pigs, cattle and poultry in Belgium, 2012-2016. International journal of antimicrobial agents, 57(6), 106350. https://doi.org/10.1016/j.ijantimicag.2021.106350 DOI: https://doi.org/10.1016/j.ijantimicag.2021.106350

Tiwari, K., Singh, M., Kumar, P., & Mukhopadhyay, K. (2022). Binding of cationic analogues of α-MSH to lipopolysaccharide and disruption of the cytoplasmic membranes caused bactericidal action against Escherichia coli. Scientific Reports, 12(1), 1987. DOI: https://doi.org/10.1038/s41598-022-05684-z

van Loon, K., Voor In 't Holt, A. F., & Vos, M. C. (2017). A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae. Antimicrobial agents and chemotherapy, 62(1), e01730-17. https://doi.org/10.1128/ AAC.01730-17 DOI: https://doi.org/10.1128/AAC.01730-17

Vázquez-López, R., Solano-Gálvez, S. G., Vignon-Whaley, J. J. J., Vaamonde, J. A. A., Alonzo, L. A. P., et al. (2020). Acinetobacter baumannii resistance: A real challenge for clinicians. Antibiotics, 9, (4), 205. https://doi.org/10.3390/antibiotics9040205 DOI: https://doi.org/10.3390/antibiotics9040205

Walsh, F. M., & Amyes, S. G. (2004). Microbiology and drug resistance mechanisms of fully resistant pathogens. Current opinion in microbiology, 7(5), 439–444. https://doi.org/10.1016/ j.mib.2004.08.007 DOI: https://doi.org/10.1016/j.mib.2004.08.007

Wang, X., Wang, Y., Zhou, Y., Li, J., Yin, W., Wang, S., Zhang, S., Shen, J., Shen, Z., & Wang, Y. (2018). Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae article. Emerging Microbes and Infections, 7(1), 1-9. https://doi.org/10.1038/s41426-018-0124-z DOI: https://doi.org/10.1038/s41426-018-0124-z

Yan, X., Liu, X., Zhao, C., & Chen, G. Q. (2023). Applications of synthetic biology in medical and pharmaceutical fields. In Signal Transduction and Targeted Therapy, 8 (1), 199. https://doi.org/10.1038/s41392-023-01440-5 DOI: https://doi.org/10.1038/s41392-023-01440-5

Yin, W., Li, H., Shen, Y., Liu, Z., Wang, S., et al. (2017). Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli. mBio, 8(3), e00543-17. https://doi.org/10.1128/mBio.00543-17 DOI: https://doi.org/10.1128/mBio.00543-17

Zaneveld, J. R. R., Parfrey, L. W., Van Treuren, W., Lozupone, C., Clemente, J. C., et al. (2011). Combined phylogenetic and genomic approaches for the high-throughput study of microbial habitat adaptation. Trends in Microbiology, 19 (10), 472-482. https://doi.org/10.1016/j.tim.2011.07.006 DOI: https://doi.org/10.1016/j.tim.2011.07.006

Zhang, X., Zhao, Y., Feng, L., Xu, M., Ge, Y., Wang, L., Zhang, Y., Cao, J., Sun, Y., Wu, Q., & Zhou, T. (2021). Combined With Mefloquine, Resurrect Colistin Active in Colistin-Resistant Pseudomonas aeruginosa in vitro and in vivo. Frontiers in microbiology, 12, 790220. https://doi.org/10.3389/ fmicb.2021.790220 DOI: https://doi.org/10.3389/fmicb.2021.790220

Zhou, H., Xu, M., Guo, W., Yao, Z., Du, X., Chen, L., Sun, Y., Shi, S., Cao, J., & Zhou, T. (2022). The Antibacterial Activity of Kaempferol Combined with Colistin against Colistin-Resistant Gram-Negative Bacteria. Microbiology spectrum, 10(6), e0226522. https://doi.org/10.1128/spectrum.02265-22 DOI: https://doi.org/10.1128/spectrum.02265-22

Downloads

Published

2023-12-31

How to Cite

Sahoo, S., Mohanty, J. N., Routray, S. P., Khandia, R., Das, J., Shah, S., & Swarnkar, T. (2023). Colistin the last resort drug in 21st century antibiotics to combat Multidrug resistance superbugs. Journal of Experimental Biology and Agricultural Sciences, 11(6), 919–929. https://doi.org/10.18006/2023.11(6).919.929

Issue

Section

REVIEW ARTICLES