Effects of Elicitation on Invitro Regeneration of two Tomato (Solanum lycopersicum L.) Cultivars in Tissue Culture
DOI:
https://doi.org/10.18006/2024.12(1).106.123Keywords:
Concentration, Explant, Growth, Propagation, Tissue cultureAbstract
Exploring alternative avenues, in vitro culture emerges as a promising option for potential bioactive compound sources. However, compared to intact plants, only a few cultures demonstrate efficient synthesis of secondary metabolites. Elicitors have gained prominence as stress agents for enhancing in vitro micropropagation in specific tissues, organs, and cells. Recent advancements in plant tissue culture involve elicitors, opening new possibilities for in vitro production of crucial food crops. This research aimed to investigate the impact of three elicitors (Activane®, Micobiol®, and Stemicol®) on germination and in vitro multiplication of two tomato cultivars explants, employing both direct and indirect in vitro organogenesis. Among the texted elicitors, Micobiol® emerged as a successful elicitor, promoting optimal seed germination, survival, and 100% growth compared to the 80% in the control group. Further, Activane® exhibited a favourable induction response and achieved 96%, 95%, and 100% in weight and diameter of callus, yet various elicitor concentrations did not exert significant influence across treatments. In conclusion, an effective disinfection and in vitro implantation of tomato seeds ensured successful germination, promoting seedling survival and growth. Various elicitors positively impacted in vitro organogenesis, particularly in root induction, with higher survival percentages in acclimatized plants. The study guides future research on elicitor treatments for large-scale tomato in vitro propagation, emphasizing the need to identify optimal elicitor concentrations.
References
Aldubai, A. A., Alsadon, A. A., Migdadi, H. H., Alghamdi, S. S., Al-Faifi, S. A., & Afzal, M. (2022). Response of Tomato (Solanum lycopersicum L.) Genotypes to Heat Stress Using Morphological and Expression Study. Plants, 11, 615. https://doi.org/10.3390/ plants11050615. DOI: https://doi.org/10.3390/plants11050615
Ali, H., Khan, M. A., Ullah, N., & Khan, R. S. (2018). Impacts of hormonal elicitors and photoperiod regimes on elicitation of bioactive secondary volatiles in cell cultures of Ajuga bracteosa. Journal of Photochemistry and Photobiology Biology, 183, 242-250. DOI: https://doi.org/10.1016/j.jphotobiol.2018.04.044
Al-Khayri, J. M., & Naik, P. M. (2020). Elicitor-Induced Production of Biomass and Pharmaceutical Phenolic Compounds in Cell Suspension Culture of Date Palm (Phoenix dactylifera L.). Molecules, 25(20), 4669. DOI: https://doi.org/10.3390/molecules25204669
Aznar-Sánchez, J. A., Velasco-Muñoz, J. F, López-Felices, B., & Román-Sánchez, I. M (2020). An Analysis of Global Research Trends on Greenhouse Technology: Towards a Sustainable Agriculture. International Journal of Environmental Research and Public Health, 17 (2), 664. DOI: https://doi.org/10.3390/ijerph17020664
Baenas, N., Garcia-Viguera, C., & Moreno, D. A. (2014). Elicitation: A tool for enriching the bioactive composition of foods. Molecules, 19, 13541–13563. DOI: https://doi.org/10.3390/molecules190913541
Barampuram, S., Allen, G., & Krasnyanski, S. (2014). Effect of various sterilization procedures on the in vitro germination of cotton seeds. Plant Cell, Tissue, and Organ Culture, 118(2), 179–185. DOI: https://doi.org/10.1007/s11240-014-0472-x
Bayraktar, M., Naziri, E., Akgun, I. H., Karabey, F., Ilhan, E., Akyol, B., & Gurel, A. (2016). Elicitor induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell, Tissue, and Organ Culture, 127(2), 289–300. DOI: https://doi.org/10.1007/s11240-016-1049-7
Bayraktar, M., Naziri, E., Karabey, F., Akgun, I. H., Bedir, E., Röck-okuyucu, B., & Gürel, A. (2018). Enhancement of stevioside production by using biotechnological approach in in vitro culture of Stevia rebaudiana. International Journal of Secondary Metabolite, 5(4), 362-374. DOI: https://doi.org/10.21448/ijsm.496724
Cai, Z., Kastell, A., Speiser, C., & Smetanska, I. (2013). Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability. Applied Biochemistry and Biotechnology, 171(1), 330–340. DOI: https://doi.org/10.1007/s12010-013-0354-4
Calaña-Janeiro, V. M., Izquierdo-Oviedo, H., González-Cepero, M. C., Rodríguez-Llanes, Y., Rodríguez-Hernández, M., & Horta-Fernández, D. (2019). Disinfection of pepper seeds (Capsicum annuum L.) cultivar 'YAMIL' for in vitro implantation. Cultivos Tropicales, 40(3), e07.
Cham, A. K., Ojeda-Zacarías, M. C., Lozoya-Saldaña, H., Alvarado-Gómez, O. G., & Vázquez-Alvarado, R. E. (2022). Effects of Elicitors on the Growth, Productivity and Health of Tomato (Solanum lycopersicum L.) under Greenhouse Conditions. Journal of Agricultural Science and Technology, 24(5), 1129–1142.
Cham, A. K., Zacarías, M. del C. O., Saldaña, H. L., Vázquez Alvarado, R. E., Olivares Sáenz, E., Martínez-Ávila, G. C., & Alvarado Gómez, O. G. (2021). Potential elicitors on secondary metabolite production and antioxidant defense activity of two tomato (Solanum lycopersicum L.) cultivars. Italian Journal of Agronomy, 16(3), 1883. DOI: https://doi.org/10.4081/ija.2021.1883
Espinosa O., Trillos G., Hoyos S., Afanador K., & Correa L. (2005). Potencial de propagación in vitro para el tomate de árbol partenocárpico Cyphomandra betacea Cav. (Sendt). Journal of the National Faculty of Agronomy, 58 (1), 2685-2695.
Gadzovska, S., Tusevski, O., Maury, S., Delaunay, A., Joseph, C., & Hagège, D. (2014). Effects of polysaccharide elicitors on secondary metabolite production and antioxidant response in Hypericum perforatum L. shoot cultures. Scientific World Journal, 10, 609-649. DOI: https://doi.org/10.1155/2014/609649
Gadzovska, S., Maury, S., & Delaunay, A. (2013). The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell, Tissue, and Organ Culture, 113(1), 25–39. DOI: https://doi.org/10.1007/s11240-012-0248-0
García-Osuna, H., Escobedo Bocardo, L., Robledo-Torres, V., Benavides Mendoza, A., & Ramírez Godina, F. (2015). Germination and micropropagation of tetraploid husk tomato (Physalis ixocarpa). Revista Mexicana de Ciancia's Agricola's, 6(spe12), 2301-2311.
Gorelick, J., & Bernstein, N. (2014). Elicitation: An underutilized tool in the development of medicinal plants as a source of therapeutic secondary metabolites. Advances in Agronomy, 124, 201 – 230. DOI: https://doi.org/10.1016/B978-0-12-800138-7.00005-X
Hasnain, A., Naqvi, S. A. H., Ayesha, S. I., Khalid, F., Ellahi, M., et al. (2022). Plants in vitro propagation with its applications in food, pharmaceuticals, and cosmetic industries; current scenario and future approaches. Frontiers in Plant Science, 13, 1009395. https://doi.org/10.3389/fpls.2022.1009395. DOI: https://doi.org/10.3389/fpls.2022.1009395
Holmes, J. E., Lung, S., Collyer, D., & Punja, Z. K. (2021). Variables Affecting Shoot Growth and Plantlet Recovery in Tissue Cultures of Drug-Type Cannabis sativa L. Frontiers in Plant Science, 12, 732-344. DOI: https://doi.org/10.3389/fpls.2021.732344
Hussain, A., Qarshi, I. A., Nazir, H., & Ullah, I. (2012). Plant tissue culture: Current status and opportunities. In Leva, A., & Rinaldi, L. M. R. (Eds.) Recent advances in plant in vitro culture. Intech, DOI: 10.5772/50568. DOI: https://doi.org/10.5772/50568
Javed, R., Yucesan, B., Zia, M., & Gurel, E. (2017). Elicitation of Secondary Metabolites in Callus Cultures of Stevia rebaudiana Bertoni Grown Under ZnO and CuO Nanoparticles Stress. International Journal of Sugar Crops and Related Industries, 20(2), 194–201. DOI: https://doi.org/10.1007/s12355-017-0539-1
Karim, M. A., & Kayum, M. A. (2007). In vitro regeneration of tomato plant from leaf and internode segments. Journal of Bangladesh Agricultural University, 5(2), 213-216.
Khan, H., Khan, T., Ahmad, N., Zaman, G., Khan, T., Ahmad, W., & Abbasi, B. H. (2021). Chemical Elicitors-Induced Variation in Cellular Biomass, Biosynthesis of Secondary Cell Products, and Antioxidant System in Callus Cultures of Fagonia indica. Molecules, 26(21), 6340. DOI: https://doi.org/10.3390/molecules26216340
Khan, T., Abbasi, B. H., & Khan, M. A. (2018). The interplay between light, plant growth regulators and elicitors on growth and secondary metabolism in cell cultures of Fagonia indica. Journal of Photochemistry and Photobiology Biology, 185, 153-160. DOI: https://doi.org/10.1016/j.jphotobiol.2018.06.002
Kurz, W. G. W., Constabel, F., Eilert, U., & Tyler, R. T. (1987). Elicitor treatment: a method for metabolite production by plant cell cultures in vitro. In: D.D. Breimer, P. Speiser (Eds.) Topics in pharmaceutical sciences 1987 (pp 283–290). Elsevier, Amsterdam New York,
Li, Y. Y., Chan, C., Stahl, C., & Yeung, E. C. (2018). Recent advances in orchid seed germination and micropropagation. In: Y.I. Lee, & E.C. Yeung (Eds.) Orchid propagation: from laboratories to greenhouses methods and protocols (pp. 1-25). New York: Springer. DOI: https://doi.org/10.1007/978-1-4939-7771-0_27
Liu, W., Liu, K., Chen, D., Zhang, Z., Li, B., El-Mogy, M. M., Tian, S., & Chen, T. (2022). Solanum lycopersicum, a Model Plant for the Studies in Developmental Biology, Stress Biology and Food Science. Foods, 11(16), 2402. https://doi.org/10.3390/ foods11162402. DOI: https://doi.org/10.3390/foods11162402
Maureira, F., Rajagopalan, K., & Stöckle C. O. (2022). Evaluating tomato production in open-field and high-tech greenhouse systems. Journal of Cleaner Production, 337, 130-459. DOI: https://doi.org/10.1016/j.jclepro.2022.130459
Munim, T. B., Zena, H., Jazar, M., & Nazmul, H. (2019). The effects of elicitors and precursor on in-vitro cultures of Trifolium resupinatum for sustainable metabolite accumulation and antioxidant activity. Biocatalysis and Agricultural Biotechnology, 22, 101–337. DOI: https://doi.org/10.1016/j.bcab.2019.101337
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Murillo-Gómez, P. A., Hoyos, S., Rodrigo M., & Chavarriaga, P. (2017). Organogénesis in-vitro using three tissue types of tree tomato [Solanum betaceum (Cav.)]. Agronomía Colombiana, 35(1), 5-11. DOI: https://doi.org/10.15446/agron.colomb.v35n1.61330
Namdeo, A. G. (2007). Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Reviews, 1, 69–79.
Ozyigit, I. I., Dogan, I., Hocaoglu-Ozyigit, A., Yalcin, B., Erdogan, A., Yalcin, I. E., Cabi, E., & Kaya, Y. (2023). Production of secondary metabolites using tissue culture-based biotechnological applications. Frontiers in Plant Science, 14(1), 132-555. DOI: https://doi.org/10.3389/fpls.2023.1132555
Peralta, I. E., & Spooner, D. M. (2006). History, Origin and Early Cultivation of Tomato (Solanaceae). In M.K. Razdan & A.K. Mattoo (Eds.) Genetic Improvement of Solanaceous Crops, Volume 2 tomato (pp. 24). Science Publisher. DOI: https://doi.org/10.1201/b10744-2
Raluca, M., Sturzoiu, C., Florenta, H., Aurelia, B., & Gheorghe, S. (2011). Biotic and abiotic elicitors induce biosynthesis and accumulation of resveratrol with antitumoral activity in the long-term Vitis vinifera L. callus cultures. Romanian Biotechnological Letters, 16(6), 6683–6689.
Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusidó, R. M., & Palazon, J. (2016). Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules, 21(2), 182. DOI: https://doi.org/10.3390/molecules21020182
Saeed, S., Ali, H., Khan, T., Kayani, W., & Khan, M. A. (2017). Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of Ajuga bracteosa Wall ex Benth., a high valued endangered medicinal plant. Physiology and Molecular Biology of Plants, 23, 229–237. DOI: https://doi.org/10.1007/s12298-016-0406-7
Servicio de Información Agroalimentaria y Pesquera (SIAP). (2020). Online: https://www.gob.mx/siap/acciones-y-programas/ produccionagricola-33119.
Urdová, J., Rexová, M., Mučaji, P., & Balažová, A. (2015). Elicitation A tool to improve secondary metabolites production in Melissa officinalis L. suspension cultures. Acta Facultatis Pharmaceuticae Universitatis, 62(Suppl. SIX), 46–50. DOI: https://doi.org/10.1515/afpuc-2015-0012
Verpoorte, R., Contin, A., & Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews, 1, 13–25. DOI: https://doi.org/10.1023/A:1015871916833
Xu, F., Valappil, A.K., Mathiyalagan, R., Tran, T.N.A., Ramadhania, Z.M., Awais, M., & Yang, D.C. (2023). In Vitro Cultivation and Ginsenosides Accumulation in Panax ginseng: A Review. Plants, 12(17): 3165. DOI: https://doi.org/10.3390/plants12173165
Zafar, N., Mujib, A., Ali, M., Tonk, D., & Gulzar, B. (2017). Aluminum chloride elicitation (amendment) improves callus biomass growth and reserpine yield in Rauvolfia serpentina leaf callus. Plant Cell, Tissue, and Organ Culture, 130, 357–368. DOI: https://doi.org/10.1007/s11240-017-1230-7
Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333. DOI: https://doi.org/10.1016/j.biotechadv.2005.01.003
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.