Application of olive mill waste-based biochar for improving wheat response to salt stress

Authors

DOI:

https://doi.org/10.18006/2023.11(5).854.865

Keywords:

Antioxidant enzymes, Biochar, Growth, Photosynthesis, Salinity

Abstract

The production of olive mill solid waste (OMSW) raises concerns due to its toxicity and negative environmental impact. However, by utilizing pyrolysis, OMSW can be converted into biochar, a carbon-rich material that detoxifies the waste and preserves its nutrient content. The OMSW-based biochar possesses alkaline properties (pH 9.6), low electrical conductivity (EC), high cation exchange capacity (CEC), a porous surface morphology, various surface functional groups, and high mineral content. This study assessed the influence of two concentrations (5% and 10%) of OMSW-based biochar on wheat plants' growth biomarkers and physiological characteristics subjected to salt stress conditions (150 mM NaCl). Findings of the study revealed that salt stress had deleterious effects on various parameters, including shoot height, fresh and dry weights of shoots and roots, relative water content (RWC%), membrane stability index (MSI%), photosynthetic pigments, and photosynthetic parameters such as the coefficient of the effective quantum yield of photochemical energy conversion of PSII (ØPSII), photochemical quenching (qP), and photochemical efficiency of PSII (Fo, Fm, Fv/Fo, and Fv/Fm). Furthermore, the levels of lipid peroxidation (MDA), hydrogen peroxide (H2O2), superoxide dismutase (SOD), and peroxidase (POD) activities significantly increased in stressed plants. On the other hand, applying both concentrations of OMSW-based biochar effectively improved the overall performance of wheat plants, irrespective of the presence of salinity. OMSW-based biochar is a promising strategy for promoting wheat growth in salt-stressed soil by improving various growth parameters and mitigating plant oxidative stress.

References

Abou-Zeid, H.M., Ismail, G.S.M., & Abdel-Latif, S.A. (2020). Influence of seed priming with ZnO nanoparticles on the salt-induced damages in wheat (Triticum aestivum L.) plants. Journal of Plant Nutrition, 44(5), 629‒643. https://doi.org/10.1080/01904167.2020.1849288 DOI: https://doi.org/10.1080/01904167.2020.1849288

Abou-Zeid, H.M., Saber, N., Abdelrahim, B.I., & Ismail, G.S.M. (2021). Nitrogen biofertilizer alleviates the inhibitory effect of cadmium on physiology and nitrogen assimilation in maize plants. International Journal of Agriculture and Biology, 25, 98‒108. doi: 10.17957/IJAB/15.1643 DOI: https://doi.org/10.17957/IJAB/15.1643

Akhtar, S.S., Andersen, M.N., & Liu, F. (2015). Residual effects of biochar on im-proving growth, physiology and yield of wheat under salt stress. Agriculture Water Management, 158, 61–68. https://doi.org/10.1016/j.agwat.2015.04.010 DOI: https://doi.org/10.1016/j.agwat.2015.04.010

Aly, H.M. (2016). Biochar and its importance in adsorption of antibiotic and heavy metals from aqueous solutions. Ecological Question, 24, 75–78. http://dx.doi.org/10.12775/EQ.2016.014 DOI: https://doi.org/10.12775/EQ.2016.014

Azeem, M., Pirjan, K., Qasim, M., Mahmood, A., Javed, T., et al. (2023). Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Scientific Reports, 13(1), 1‒17. https://doi.org/10.1038/ s41598-023-29954-6 DOI: https://doi.org/10.1038/s41598-023-29954-6

Batuecas, E., Tommasi, T., Battista, F., Negro, V., Sonetti, G., et al. (2019). Life cycle assessment of waste disposal from olive oil production: anaerobic digestion and conventional disposal on soil. Journal of Environmental Management, 237, 94–102. https://doi. org/10.1016/j.jenvman.2019.02.021 DOI: https://doi.org/10.1016/j.jenvman.2019.02.021

Cong, M., Hu, Y., Sun, X., Yan, H., Yu, G., et al. (2023) Long-term effects of biochar application on the growth and physiological characteristics of maize. Frontiers in Plant Science,14,1172425. doi: 10.3389/fpls.2023.1172425 DOI: https://doi.org/10.3389/fpls.2023.1172425

Deshmuukh, P.S., Sairam, R.K., & Shukla, D.S. (1991). Measurement of ion leakage as a screening technique for drought resistance in wheat genotypes. Indian Journal of Plant Physiology, 34, 89–91

Ekinci, M., Turan, M., & Yildirim, E. (2022). Biochar mitigates salt stress by regulating nutrient uptake and antioxidant activity, alleviating the oxidative stress and abscisic acid content in cabbage seedlings. Turkish Journal of Agriculture and Forestry, 3, 28–37. https://doi.org/ 10.3906/tar-2104-81

El-Gamal, S.M.A., Serag, El-Din, W.M., Farouk, S., & Mokhtar, N.A.Y.O. (2021). Integrated effects of biochar and potassium silicate on borage plant under different irrigation regimes in sandy soil. Journal of Horticultural Science and Ornamental Plants, 13, 60–76. doi: 10.5829/idosi.jhsop.2021.60.76

Farouk, S., & AL-Huqail, A.A. (2022). Sustainable biochar and/or melatonin improve salinity tolerance in borage plants by modulating osmotic adjustment, antioxidants, and ion homeostasis. Plants, 11,765. https://doi.org/10.3390/plants11060765 DOI: https://doi.org/10.3390/plants11060765

Genty, B., Briantais, J.M., & Baker, N.R. (1989). The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Biophysica Acta, 990 (1), 87–92 DOI: https://doi.org/10.1016/S0304-4165(89)80016-9

Giannopolitis, C.N., & Ries, S.K. (1977). Superoxide dismutase: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiology, 59(2), 315-318 DOI: https://doi.org/10.1104/pp.59.2.315

Haddad, K, Jeguirim, M., Jellali, S., Thevenin, N., Ruidavets, L., & Limousy, L. (2021). Biochar production from cypress sawdust and olive mill wastewater: agronomic approach. Science of The Total Environment, 752, 141713. https://doi.org/10.1016/ j.scitotenv.2020.141713 DOI: https://doi.org/10.1016/j.scitotenv.2020.141713

Haider, F. U., Wang, X., Farooq, M., Hussain, S., Cheema, S. A., et al. (2022). Biochar application for the remediation of trace metals in contaminated soils: implications for stress tolerance and crop production. Ecotoxicology Environmental Safety, 230, 113165. doi: 10.1016/j.ecoenv.2022.113165 DOI: https://doi.org/10.1016/j.ecoenv.2022.113165

Han, L., Sun, K., Yang, Y., Xia, X., Li, F., Yang, Z., & Xing, B. (2020). Biochar's stability and effect on the content, composition and turnover of soil organic carbon. Geoderma, 364, 114184. https://doi.org/10.1016/j.geoderma.2020.114184 DOI: https://doi.org/10.1016/j.geoderma.2020.114184

Hannan, F., Islam, F., Huang, Q., Farooq, M.A., Ayyaz, A., et al. (2021). Interactive effects of biochar and mussel shell activated concoctions on immobilization of nickel and their amelioration on the growth of rapeseed in contaminated aged soil. Chemosphere, 282,130897. https:// doi. org/ 10. 1016/j. chemosphere. 2021. 130897 DOI: https://doi.org/10.1016/j.chemosphere.2021.130897

Hartree, E.F. (1972). Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, 48, 422-427 DOI: https://doi.org/10.1016/0003-2697(72)90094-2

Hassan, N.A., Aly, H.M., Wahba, T.F., & Shaker, N. (2022). Laboratory evaluation of four types of biochar to manage some stored product insects. The International Journal of Tropical Insect Science, 42, 2959–2968. https://doi.org/10.1007/s42690-022-00824-4 DOI: https://doi.org/10.1007/s42690-022-00824-4

Ibrahim, M.E.H., Ali, A.Y.A., Zhou, G., Elsiddig, A.M.I., Zhu, G., Nimir, N.E.A., & Ahmad, I. (2020) Biochar application affects forage sorghum under salinity stress. Chilean Journal of Agricultural Research, 80, 317–325 DOI: https://doi.org/10.4067/S0718-58392020000300317

Iqbal, J., Shah, N.S., Sayed, M., Niazi, N.K., Imran, M., et al. (2021). Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. Journal of Hazard Materials, 403,123854. https:// doi. org/ 10. 1016/j. jhazm at. 2020. 123854 DOI: https://doi.org/10.1016/j.jhazmat.2020.123854

Kahrizi, S., Sedghi, M., & Sofalian, O. (2012). Effect of salt stress on proline and activity of antioxidant enzymes in ten durum wheat cultivars Annals of Biological Research, 3, 3870–3874

Kapoor, A., Sharma, R., Kumar, A., & Sepehya, S. (2022). Biochar as a means to improve soil fertility and crop productivity: a review. Journal of Plant Nutrition, 45, 1–9. doi:10.1080/ 01904167.2022.2027980 DOI: https://doi.org/10.1080/01904167.2022.2027980

Khan, I., Luan, C., Qi, W., Wang, X., Yu, B., et al. (2022). The residual impact of straw mulch and biochar amendments on grain quality and amino acid contents of rainfed maize crop. Journal of Plant Nutrition, 46, 1283–1295. doi: 10.1080/ 01904167.2022.2056483 DOI: https://doi.org/10.1080/01904167.2022.2056483

Leon-Camacho, M., Viera-Alcaide, I., & Ruiz-Mendez, M.V. (2003). Elimination of polyclic aromatic hydrocarbons by bleaching of olive pomace oil. The European Journal of Lipid Science and Technology, 105 (1), 512–525. https://doi.org/10.1002/ejlt.200390010 DOI: https://doi.org/10.1002/ejlt.200390010

Li, Z., Zhu, L., Zhao, F., Li, J., Zhang, X., et al. (2022). Plant salinity stress response and nano-enabled plant salt tolerance. Frontiers in Plant Science, 13, 843994. doi: 10.3389/fpls.2022.843994 DOI: https://doi.org/10.3389/fpls.2022.843994

Mahmoud, A. W. M., Samy, M. M., Sany, H., Eid, R. R., Rashad, H. M., & Abdeldaym, E. A. (2022). Nanopotassium, nanosilicon, and biochar applications improve potato salt tolerance by modulating photosynthesis, water status, and biochemical constituents. Sustainability, 14, 723. doi: 10.3390/su14020723 DOI: https://doi.org/10.3390/su14020723

Melo, L.C., Coscione, A.R., Abreu, C.A., Puga, A.P., & Camargo, O.A. (2013). Influence of pyrolysis temperature on cadmium and zinc sorption capacity of sugar cane straw–derived biochar. BioResources, 8, 4992–5004. doi:10.15376/ biores.8.4.4992-5004 DOI: https://doi.org/10.15376/biores.8.4.4992-5004

Moran, R. (1982). Formulae for determination of chlorophyllous pigments extracted with N,N-dimethyl formamide. Plant Physiology, 69 (6), 1376–81. doi: 10.1104/pp.69.6.1376. DOI: https://doi.org/10.1104/pp.69.6.1376

Nandiyanto, A.B.D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Journal of Science and Technology, 4 (1), 97–118. http://ejournal.upi.edu/index.php/ijost/ DOI: https://doi.org/10.17509/ijost.v4i1.15806

Ndiate, N. I., Zaman, Q. U., Francis, I. N., Dada, O. A., Rehman, A., et al. (2022). Soil amendment with arbuscular mycorrhizal fungi and biochar improves salinity tolerance, growth, and lipid metabolism of common wheat (Triticum aestivum l.). Sustainability, 14, 3210. doi: 10.3390/su14063210 DOI: https://doi.org/10.3390/su14063210

Noreen, Z., & Ashraf, M. (2009). Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environmental and Experimental Botany, 67(2), 395–402 DOI: https://doi.org/10.1016/j.envexpbot.2009.05.011

Novak, J., Lima, I., & Xing, B. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3 (843), 195–206

Rawat, J., Saxena, J., & Sanwal, P. (2019). Biochar: A sustainable approach for improving plant growth and soil properties. In V. Abrol, & P. Sharma (Eds.), Biochar-an imperative amendment for soil and the environment. IntechOpen, https://doi.org/10.5772/intechopen.82151 DOI: https://doi.org/10.5772/intechopen.82151

Rodriguez, J.A., Lustosa Filho, J.F., Melo, L.C.A.,de Assis, I.R., & Oliveira, T.S. (2021). Co-pyrolysis of agricultural and industrial wastes changes the composition and stability of biochars and can improve their agricultural and environmental benefits. Journal of Analytical and Applied Pyrolysis, 155, 105036 DOI: https://doi.org/10.1016/j.jaap.2021.105036

Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S., & Yildirim, E. (2018). Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae, 240, 196–204. DOI: https://doi.org/10.1016/j.scienta.2018.06.016

Sikora, L.J., & Moore-Kucera, J. (2014) Soil test methods from the southeastern United States. Athens, GA: University of Georgia, College of Agriculture Experiment Stations 180. Retrieved from http://www.clemson.edu/agsrvlb/sera6/MethodsManualFinalSERA6.pdf

Sofy, M.R., Elhindi, K.M, Farouk, S., & Alotaibi, M.A. (2020). Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plants, 9, 1197 DOI: https://doi.org/10.3390/plants9091197

Soliman, M. H., Alnusairi, G.S.H., Khan, A.A., Alnusaire, T.S., Fakhr, M.A., et al. (2023). Biochar and selenium nanoparticles induce water transporter genes for sustaining carbon assimilation and grain production in salt‑stressed wheat. Journal of Plant Growth Regulations, 42, 1522–1543 https://doi.org/10.1007/ s00344-022-10636-y DOI: https://doi.org/10.1007/s00344-022-10636-y

Sun, Y., Xiong, X., He, M., Xu, Z., Hou, D., et al. (2021). Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review. Chemical Engineering Journal, 424, 130387. https://doi.org/10.1016/ j.cej.2021.130387 DOI: https://doi.org/10.1016/j.cej.2021.130387

Talaat, N.B., & Shawky, B.T. (2014). Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environmental and Experimental Botany, 98(1), 20–31 DOI: https://doi.org/10.1016/j.envexpbot.2013.10.005

Thomas, S.C., Frye, S., Gale, N., Garmon, M., Launchbury, R., et al. (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management, 129, 62–68. DOI: https://doi.org/10.1016/j.jenvman.2013.05.057

Turner N.C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58, 339–366 DOI: https://doi.org/10.1007/BF02180062

Ufkay, K., Toptas, A., Yanik, J., & Aktas, L. (2021). Does biochar alleviate salt stress impact on growth of salt-sensitive crop common bean. Communications in Soil Science and Plant Analysis, 52 (5), 456-469. doi: 10.1080/00103624.2020.1862146 DOI: https://doi.org/10.1080/00103624.2020.1862146

Van Kooten, O., & Snel, J.F.H. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25 (3), 147–50. doi: 10.1007/BF00033156 DOI: https://doi.org/10.1007/BF00033156

Velikova, V., & Loreto, F. (2005).On the relationship between isoprene emission and thermo tolerance in Phragmites ausrralis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell and Environment, 28, 318–327 DOI: https://doi.org/10.1111/j.1365-3040.2004.01314.x

Wang, C., Zhang, S.H., Wang, P.F., Hou, J., Zhang, W.J., Li, W., & Lin, Z.P. (2009). The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere, 75, 1468–1476 DOI: https://doi.org/10.1016/j.chemosphere.2009.02.033

Wellburn, A.R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with DOI: https://doi.org/10.1016/S0176-1617(11)81192-2

spectrophotometers of different resolution. Journal of Plant Physiology, 144 (3),307–13

Wu, Y., Wang, X., Zhang, L., Zheng, Y., Liu, X., & Zhang, Y. (2023). The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. Frontiers in Plant Science, 14,1163451.doi: 10.3389/fpls.2023.1163451 DOI: https://doi.org/10.3389/fpls.2023.1163451

Yan, N., Marschner, P., Cao, W.H., Zuo, C.Q., & Qin, W. (2015). Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3, 316–323. https://doi.org/10.1016/j. iswer.2015.11.003 DOI: https://doi.org/10.1016/j.iswcr.2015.11.003

Yan, Y., Pan, C., Du, Y., Li, D., & Liu, W. (2018). Exogenous salicylic acid regulates reactive oxygen species metabolism and ascorbate– glutathione cycle in Nitraria tangutorum Bobr. under salinity stress. Physiology and Molecular Biology of Plants, 24 (4), 577–589 DOI: https://doi.org/10.1007/s12298-018-0540-5

Zhang, H., Jiang, Y., He, Z. & Ma, M. (2005).Cadmium accumulation and oxidative burst in garlic (Allium sativum). Journal of Plant Physiology, 162(9) 977–984 DOI: https://doi.org/10.1016/j.jplph.2004.10.001

Zhang, Y., Ding, J., Wang, H., Su, L., & Zhao, C. (2020). Biochar addition alleviates the negative effects of drought and salinity stress on soybean productivity and water use efficiency. BMC Plant Biology, 20, 288 https://doi.org/10.1186/s12870-020-02493-2 DOI: https://doi.org/10.1186/s12870-020-02493-2

Downloads

Published

2023-11-30

How to Cite

Abou-Zeid, H. M., & Aly, H. M. (2023). Application of olive mill waste-based biochar for improving wheat response to salt stress. Journal of Experimental Biology and Agricultural Sciences, 11(5), 854–865. https://doi.org/10.18006/2023.11(5).854.865

Issue

Section

RESEARCH ARTICLES

Categories