Development of the bacterial consortia for the degradation of benzo[a]pyrene, pyrene from hydrocarbons waste

Authors

  • Beema Kumari Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow-226025, Uttar Pradesh-226025, India https://orcid.org/0000-0003-4343-1065
  • Ram Chandra Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow-226025, Uttar Pradesh-226025, India https://orcid.org/0000-0001-7070-6074

DOI:

https://doi.org/10.18006/2023.11(4).671.682

Keywords:

Benzo[a]pyrene, Pyrene, Consortia, PAHs, Bioremadiation

Abstract

The environment is heavily populated with polycyclic aromatic hydrocarbons (PAHs), which are dangerous to human health. Degradation and cleaning of PAH chemicals from water and soil regions are crucial due to their chemical and biological impacts and persistent nature. In this study, we found that a very efficient bacterial consortium A-LOBP-19A+LOP-9 (99.62%) for benzo[a]pyrene up to 1000ppm and B-LOP-9 +GWP-2 (93.8%) for pyrene up to 2000ppm concentration degradation and it was done in MSM medium with isolated bacterial strains and incubated at 37° C for 50 days and 30 days respectively. This consortium consisting of the Mycobacterium vaanbaalenii GWP-2 (ON715011), Staphylococcus aureus LOP-9(ON715121), and Stutzerimonas stutzeri (LOBP-19A) OP389146, and these have capabilities of mentioned PAHs. The HPLC analysis suggested that both benzo[a]pyrene and pyrene degraded through peaks by both consortia. Degraded metabolites were identified by GC-MS and reported the presence of Phthalic acid, Naphthalene, 1,4-benzodicarboxylic acid, Butoxyacetic acid, Benzeneacetic acid and benzo [a]pyrene-1,6-dione. Thus, the study demonstrated efficient bacterial community enhancement for PAHs (benzo[a]pyrene, pyrene) decomposition, and these can be further explored for the cleanup of hydrocarbons pollution.

Author Biography

Beema Kumari, Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow-226025, Uttar Pradesh-226025, India

 

 

References

Agrawal, N., & Shahi, S. K. (2017). Degradation of polycyclic aromatic hydrocarbon (pyrene) using novel fungal strain Coriolopsis byrsina strain APC5. International Biodeterioration & Biodegradation, 122, 69-81. DOI: https://doi.org/10.1016/j.ibiod.2017.04.024

Aguilera, F., Méndez, J., Pásaro, E., & Laffon, B. (2010). Review on the effects of exposure to spilled oils on human health. Journal of Applied Toxicology, 30(4), 291-301. DOI: https://doi.org/10.1002/jat.1521

Aziz, A., Agamuthu, P., Alaribe, F. O., & Fauziah, S. H. (2018). Biodegradation of benzo [a] pyrene by bacterial consortium isolated from mangrove sediment. Environmental technology, 39(4), 527-535. DOI: https://doi.org/10.1080/09593330.2017.1305455

Bayat, Z., Hassanshahian, M., & Hesni, M. A. (2015). Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf. Marine Pollution Bulletin, 101(1), 85-91. DOI: https://doi.org/10.1016/j.marpolbul.2015.11.021

Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology research international, 2011, 941810. https://doi.org/10.4061/ 2011/941810. DOI: https://doi.org/10.4061/2011/941810

Di Lorenzo, R. A., Lobodin, V. V., Cochran, J., Kolic, T., & Besevic, S. (2019). Fast gas chromatography-atmospheric pressure (photo) ionization mass spectrometry of polybrominated diphenylether flame retardants. Analytica chimica acta, 1056, 70-78. DOI: https://doi.org/10.1016/j.aca.2019.01.007

Díaz-Ramírez, I. J., Ramírez-Saad, H., Gutiérrez-Rojas, M., & Favela-Torres, E. (2003). Biodegradation of Maya crude oil fractions by bacterial strains and a defined mixed culture isolated from Cyperus laxus rhizosphere soil in a contaminated site. Canadian Journal of Microbiology, 49(12), 755-761. DOI: https://doi.org/10.1139/w03-098

Donald, C. E., Nakken, C. L., Sørhus, E., Perrichon, P., & Jørgensen, K. B. (2023). Alkyl-phenanthrenes in early life stage fish: differential toxicity in Atlantic haddock (Melanogrammus aeglefinus) embryos. Environmental Science: Processes & Impacts, 25(3), 594-608. DOI: https://doi.org/10.1039/D2EM00357K

Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Frontiers in microbiology, 7, 1369. https://doi.org/10.3389/fmicb.2016.01369. DOI: https://doi.org/10.3389/fmicb.2016.01369

Johnston, J. E., Lim, E., & Roh, H. (2019). Impact of upstream oil extraction and environmental public health: A review of the evidence. Science of the Total Environment, 657, 187-199. DOI: https://doi.org/10.1016/j.scitotenv.2018.11.483

Joutey, N. T., Bahafid, W., Sayel, H., & El Ghachtouli, N. (2013). Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegradation-life of science, 1, 289-320.

Kristanti, R. A., & Hadibarata, T. (2015). Biodegradation and identification of transformation products of fluorene by ascomycete fungi. Water, Air, & Soil Pollution, 226, 1-6. DOI: https://doi.org/10.1007/s11270-015-2674-1

Kumari, B., Chandra, H., & Chandra, R. (2022). Detection of pyrene degrading bacterial strains (LOP-9 Staphylococcus aureus and GWP-2 Mycobacterium vaanbaalenii) and their metabolic products. Cleaner Chemical Engineering, 4, 100080. DOI: https://doi.org/10.1016/j.clce.2022.100080

Kumari, B., & Chandra, R. (2022). A Review on Bacterial Degradation of Benzo[a]pyrene and Its Impact on Environmental Health. Journal of Experimental Biology and Agricultural Sciences, 10(6), 1253–1265. https://doi.org/10.18006/ 2022.10(6).1253.1265 DOI: https://doi.org/10.18006/2022.10(6).1253.1265

Kumari, B., & Chandra, R. (2023). Benzo [a] pyrene degradation from hydrocarbon-contaminated soil and their degrading metabolites by Stutzerimonas stutzeri (LOBP-19A). Waste Management Bulletin, 1(3), 115-127. DOI: https://doi.org/10.1016/j.wmb.2023.07.006

Lunn, G. (2005). HPLC methods for recently approved pharmaceuticals. John Wiley & Sons. DOI: https://doi.org/10.1002/0471711683

Mandal, S. K., & Das, N. (2017). Biodegradation of benzo [a] pyrene by Rhodotorula sp. NS01 strain isolated from contaminated soil sample. Research Journal of Pharmacy and Technology, 10(6), 1751-1757. DOI: https://doi.org/10.5958/0974-360X.2017.00309.2

Militon, C., Boucher, D., Vachelard, C., Perchet, G., Barra, V., et al. (2010). Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiology Ecology, 74(3), 669-681. DOI: https://doi.org/10.1111/j.1574-6941.2010.00982.x

Minuti, L., Pellegrino, R. M., & Tesei, I. (2006). Simple extraction method and gas chromatography–mass spectrometry in the selective ion monitoring mode for the determination of phenols in wine. Journal of Chromatography A, 1114(2), 263-268. https://doi.org/10.1016/j.chroma.2006.02.068 DOI: https://doi.org/10.1016/j.chroma.2006.02.068

Mohandass, R., Rout, P., Jiwal, S., & Sasikala, C. (2012). Biodegradation of benzo [a] pyrene by the mixed culture of Bacillus cereus and Bacillus vireti isolated from the petrochemical industry. Journal of Environmental Biology, 33(6), 985.

Murphy, S. M., Bautista, M. A., Cramm, M. A., & Hubert, C. R. (2021). Diesel and crude oil biodegradation by cold-adapted microbial communities in the Labrador Sea. Applied and Environmental Microbiology, 87(20), e00800-21. DOI: https://doi.org/10.1128/AEM.00800-21

Nor, N. M., Hadibarata, T., Zubir, M. M. F. A., Lazim, Z. M., Adnan, L. A., & Fulazzaky, M. A. (2015). Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06. Bioprocess and Biosystems Engineering, 38, 2167-2175. DOI: https://doi.org/10.1007/s00449-015-1456-x

Nzila, A., Musa, M. M., Afuecheta, E., Al-Thukair, A., Sankaran, S., Xiang, L., & Li, Q. X. (2023). Benzo [A] Pyrene Biodegradation by Multiple and Individual Mesophilic Bacteria under Axenic Conditions and in Soil Samples. International Journal of Environmental Research and Public Health, 20(3), 1855. DOI: https://doi.org/10.3390/ijerph20031855

Nzila, A., Musa, M. M., Afuecheta, E., Thukair, A., Sankaran, S., Xiang, L., & Li, Q. X. (2022). Benzo [a] pyrene biodegradation by multiple and individual mesophilic bacteria in axenic conditions and in soil samples. bioRxiv, 2022-05. DOI: https://doi.org/10.1101/2022.05.27.493769

Ozaki, S., Kishimoto, N., & Fujita, T. (2007). Change in the predominant bacteria in a microbial consortium cultured on media containing aromatic and saturated hydrocarbons as the sole carbon source. Microbes and Environments, 22(2), 128-135. DOI: https://doi.org/10.1264/jsme2.22.128

Patowary, K., Patowary, R., Kalita, M. C., & Deka, S. (2016). Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Frontiers in microbiology, 7, 1092. DOI: https://doi.org/10.3389/fmicb.2016.01092

Perhar, G., & Arhonditsis, G. B. (2014). Aquatic ecosystem dynamics following petroleum hydrocarbon perturbations: A review of the current state of knowledge. Journal of Great Lakes Research, 40, 56-72. DOI: https://doi.org/10.1016/j.jglr.2014.05.013

Rahman, P. K., Pasirayi, G., Auger, V., & Ali, Z. (2009). Development of a simple and low cost microbioreactor for high-throughput bioprocessing. Biotechnology letters, 31, 209-214. DOI: https://doi.org/10.1007/s10529-008-9853-8

Schneider, Y. K., Jørgensen, S. M., Andersen, J. H., & Hansen, E. H. (2021). Qualitative and quantitative comparison of liquid–liquid phase extraction using ethyl acetate and liquid–solid phase extraction using poly-benzyl-resin for natural products. Applied Sciences, 11(21), 10241. DOI: https://doi.org/10.3390/app112110241

Selvi, A., Salam, J. A., & Das, N. (2014). Biodegradation of cefdinir by a novel yeast strain, Ustilago sp. SMN03 isolated from pharmaceutical wastewater. World Journal of Microbiology and Biotechnology, 30, 2839-2850. DOI: https://doi.org/10.1007/s11274-014-1710-4

Vaidya, S., Jain, K., & Madamwar, D. (2017). Metabolism of pyrene through phthalic acid pathway by enriched bacterial consortium composed of Pseudomonas, Burkholderia, and Rhodococcus (PBR). 3 Biotech, 7, 1-15. DOI: https://doi.org/10.1007/s13205-017-0598-8

Venosa, A. D., & Zhu, X. (2003). Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Science & Technology Bulletin, 8(2), 163-178. DOI: https://doi.org/10.1016/S1353-2561(03)00019-7

Yan, Z., Zhang, Y., Wu, H., Yang, M., Zhang, H., Hao, Z., & Jiang, H. (2017). Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo [a] pyrene biodegradation. RSC advances, 7(74), 46690-46698. DOI: https://doi.org/10.1039/C7RA09274A

Zakaria, N. N., Gomez-Fuentes, C., Abdul Khalil, K., Convey, P., Roslee, A. F. A., et al. (2021). Statistical optimization of diesel biodegradation at low temperatures by an Antarctic marine bacterial consortium isolated from non-contaminated seawater. Microorganisms, 9(6), 1213. DOI: https://doi.org/10.3390/microorganisms9061213

Downloads

Published

2023-08-31

How to Cite

Kumari, B., & Chandra, R. (2023). Development of the bacterial consortia for the degradation of benzo[a]pyrene, pyrene from hydrocarbons waste. Journal of Experimental Biology and Agricultural Sciences, 11(4), 671–682. https://doi.org/10.18006/2023.11(4).671.682

Issue

Section

RESEARCH ARTICLES

Categories