Acclimation to warm temperatures modulates lactate and malate dehydrogenase isozymes in juvenile Horabagrus brachysoma (Günther)

Authors

  • Rishikesh S. Dalvi Department of Zoology, Maharshi Dayanand College (University of Mumbai), Parel, Mumbai-400012, Maharashtra, India https://orcid.org/0000-0003-3517-0184
  • Asim K. Pal Division of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education, Versova, Mumbai-400061, Maharashtra, India
  • Dipesh Debnath ICAR-Central Inland Fisheries Research Institute, Regional Centre, HousefedComplex, Dispur, Guwahati–781 006, Assam, India https://orcid.org/0000-0002-6678-2100

DOI:

https://doi.org/10.18006/2023.11(4).683.695

Keywords:

Horabagrus brachysoma, Acclimation temperature, LDH, sMDH, Zymography

Abstract

Differential expression of isozymes enables fish to tolerate temperature fluctuations in their environment. The present study explores the modulation of lactate dehydrogenase (LDH) and cytoplasmic malate dehydrogenase (sMDH) isozyme expression in the heart, muscle, brain, liver, gill, and kidney of juvenile Horabagrus brachysoma after 30 days of acclimation at 26, 31, 33, and 36°C. LDH and sMDH zymography were performed using native polyacrylamide gel electrophoresis. The zymography revealed five distinct bands of LDH isoenzymes (labelled from cathode to anode as LDH-A4, LDH-A3B1, LDH-A2B2, LDH-A1B3, and LDH-B4) and three distinct bands of sMDH isoenzymes (labelled from cathode to anode as sMDH-A2, sMDH-AB, and sMDH-B2), with considerable variation in their expression in the tissues. Acclimation to the test temperatures did not influence the expression patterns of LDH or sMDH isozymes. Densitometric analysis of individual isozyme bands revealed a reduction in the densities of bands containing the LDH-B and sMDH-B molecules, while the densities of bands containing the LDH-A and sMDH-A molecules increased in the gills and muscle, indicating the role of these organs in adaptive responses to thermal acclimation. However, the total densities of the LDH and sMDH isozymes increased with higher acclimation temperatures, indicating that adaptation to increased temperatures in H. brachysoma is primarily characterised by quantitative changes in isozyme expression.

Author Biographies

Rishikesh S. Dalvi, Department of Zoology, Maharshi Dayanand College (University of Mumbai), Parel, Mumbai-400012, Maharashtra, India

Division of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education, Versova, Mumbai-400061, Maharashtra, India

Dipesh Debnath, ICAR-Central Inland Fisheries Research Institute, Regional Centre, HousefedComplex, Dispur, Guwahati–781 006, Assam, India

Division of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education, Versova, Mumbai-400061, Maharashtra, India

References

Ahmad, R. (2009). Functional and adaptive significance of differentially expressed lactate dehydrogenase isoenzymes in tissues of four obligatory air-breathing Channa species. Biologia, 64(1), 192–196. https://doi.org/10.2478/s11756-009-0017-7 DOI: https://doi.org/10.2478/s11756-009-0017-7

Ali, P. A., Raghavan, R., & Prasad, G. (2007). Threatened fishes of the world: Horabagrus brachysoma (Gunther, 1864) (Bagridae). Environmental Biology of Fishes, 78(3), 221. https://doi.org/10.1007/s10641-006-0022-4 DOI: https://doi.org/10.1007/s10641-006-0022-4

Aswani, V., & Trabucco, D. (2019). Biochemical adaptation in brain acetylcholinesterase during acclimation to sub-lethal temperatures in the eurythermal fish Tilapia mossambica. Scientific Reports, 9(1), 19762. https://doi.org/10.1038/s41598-019-56066-x DOI: https://doi.org/10.1038/s41598-019-56066-x

Aubry, L. M., & Williams, C. T. (2022). Vertebrate phenological plasticity: From molecular mechanisms to ecological and evolutionary implications. Integrative and Comparative Biology, 62(4), 958–971. https://doi.org/10.1093/icb/icac121 DOI: https://doi.org/10.1093/icb/icac121

Badr, A., Haverinen, J., & Vornanen, M. (2023). Tissue-specific differences and temperature-dependent changes in Na, K-ATPase of the roach (Rutilus rutilus). Aquaculture, 563, 738963. https://doi.org/10.1016/j.aquaculture.2022.738963 DOI: https://doi.org/10.1016/j.aquaculture.2022.738963

Baldwin, J., &Hochachka, P. W. (1970). Functional significance of isoenzymes in thermal acclimatization. Acetylcholinesterase from trout brain. Biochemical Journal, 116(5), 883–887. https://doi.org/10.1042/bj1160883 DOI: https://doi.org/10.1042/bj1160883

Bhat, A. (2001). A new report of Horabagrus brachysoma Jayaram, family Bagridae in Uttara Kannada District, Karnataka. Journal of the Bombay Natural History Society, 98(2), 294–295.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999 DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Coppes, Z. L., Schwantes, M. L. B., & Schwantes, A. R. (1987). Adaptative features of enzymes from family Sciaenidae (Perciformes)—I. Studies on soluble malate dehydrogenase (s-MDH) and creatine kinase (CK) of fishes from the south coast of Uruguay. Comparative Biochemistry and Physiology. Part B: Comparative Biochemistry, 88(1), 203–209. https://doi.org/ 10.1016/0305-0491(87)90101-5 DOI: https://doi.org/10.1016/0305-0491(87)90101-5

Coquelle, N., Fioravanti, E., Weik, M., Vellieux, F., & Madern, D. (2007). Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. Journal of Molecular Biology, 374(2), 547–562. https://doi.org/10.1016/j.jmb.2007.09.049 DOI: https://doi.org/10.1016/j.jmb.2007.09.049

Crawford, D. L., & Powers, D. A. (1989). Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulusheteroclitus. Proceedings of the National Academy of Sciences of the United States of America, 86(23), 9365–9369. https://doi.org/10.1073/pnas.86.23.9365 DOI: https://doi.org/10.1073/pnas.86.23.9365

Dalvi, R. S., Pal, A. K., Tiwari, L. R., Das, T., & Baruah, K. (2009). Thermal tolerance and oxygen consumption in Horabagrus brachysoma (Gunther) acclimated to different temperatures. Aquaculture, 29, 116–119. https://doi.org/10.1016/ j.aquaculture.2009.06.034 DOI: https://doi.org/10.1016/j.aquaculture.2009.06.034

Dalvi, R. S., Pal, A. K., Tiwari, L. R., & Baruah, K. (2012). Influence of acclimation temperature on the induction of heat-shock protein 70 in the catfish Horabagrus brachysoma (Günther). Fish Physiology and Biochemistry, 38(4), 919–927. https://doi.org/10.1007/s10695-011-9578-9 DOI: https://doi.org/10.1007/s10695-011-9578-9

Dalvi, R. S., Das, T., Debnath, D., Yengkokpam, S., Baruah, K., Tiwari, L. R., & Pal, A. K. (2017). Metabolic and cellular stress responses of catfish, Horabagrus brachysoma (Günther) acclimated to increasing temperatures. Journal of Thermal Biology, 65, 32–40. https://doi.org/10.1016/j.jtherbio.2017.02.003 DOI: https://doi.org/10.1016/j.jtherbio.2017.02.003

de Almeida-Val, V. M. F., & Val, A. L. (1993). Evolutionary trends of LDH isozymes in fishes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 105(1), 21–28. https://doi.org/10.1016/0305-0491(93)90164-Z DOI: https://doi.org/10.1016/0305-0491(93)90164-Z

De Luca, P. H., Schwantes, M. L. B., & Schwantes, A. R. (1983). Adaptative features of ectothermic enzymes—IV. Studies on malate dehydrogenase of Astyanax fasciatus (Characidae) from lobo reservoir (São Carlos, São Paulo, Brasil). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 74(2), 315–324. https://doi.org/10.1016/0305-0491(83)90019-6 DOI: https://doi.org/10.1016/0305-0491(83)90019-6

El-Alfy, S. H., Abdelmordy, M. B., & Salama, M. S. (2008). Lactate dehydrogenase isozymes in tilapiine fishes (Cichlidae): Tissue expression and genetic variability patterns. In Proceedings of the 8th International Symposium on Tilapia in Aquaculture (pp. 181–197).

Ern, R., Andreassen, A. H., & Jutfelt, F. (2023). Physiological mechanisms of acute upper thermal tolerance in fish. Physiology, 38(3), 141–158. https://doi.org/10.1152/physiol.00027.2022 DOI: https://doi.org/10.1152/physiol.00027.2022

Farias, I. P., & Fonseca de Almeida-Val, V. M. F. (1992). Malate dehydrogenase (sMDH) in Amazon cichlid fishes: Evolutionary features. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 103(4), 939–943. https://doi.org/ 10.1016/0305-0491(92)90219-H DOI: https://doi.org/10.1016/0305-0491(92)90219-H

Ferreira, N. C. D. A., De Almeida-Val, V. M. F., & Schwantes, M. L. B. (1991). Lactate dehydrogenase (LDH) in 27 species of Amazon fish: Adaptive and evolutive aspects. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 100(2), 391–398. https://doi.org/10.1016/0305-0491(91)90392-Q DOI: https://doi.org/10.1016/0305-0491(91)90392-Q

Ficke, A. D., Myrick, C. A., & Hansen, L. J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17(4), 581–613. https://doi.org/10.1007/s11160-007-9059-5 DOI: https://doi.org/10.1007/s11160-007-9059-5

Goward, C. R., & Nicholls, D. J. (1994). Malate dehydrogenase: A model for structure, evolution, and catalysis. Protein Science, 3(10), 1883–1888. https://doi.org/10.1002/pro.5560031027 DOI: https://doi.org/10.1002/pro.5560031027

Guillen, A. C., Borges, M. E., Herrerias, T., Kandalski, P. K., de Arruda Marins, E., et al. (2019). Effect of gradual temperature increase on the carbohydrate energy metabolism responses of the Antarctic fish Notothenia rossii. Marine Environmental Research, 150, 104779. https://doi.org/10.1016/j.marenvres.2019.104779 DOI: https://doi.org/10.1016/j.marenvres.2019.104779

Hochachka, P. W. (1965). Isoenzymes in metabolic adaptation of a poikilotherm: Subunit relationships in lactic dehydrogenases of goldfish. Archives of Biochemistry and Biophysics, 111(1), 96–103. https://doi.org/10.1016/0003-9861(65)90327-9 DOI: https://doi.org/10.1016/0003-9861(65)90327-9

Katwate, U., Raut, R., Khot, M., Paingankar, M., & Dahanukar, N. (2012). Molecular identification and ecology of a newly discovered population of sun catfish Horabagrus brachysoma from northern Western Ghats of India. ISRN Zoology, 2012, 1–9. https://doi.org/10.5402/2012/419320 DOI: https://doi.org/10.5402/2012/419320

Kent, J., Koban, M., & Prosser, C. L. (1988). Cold-acclimation-induced protein hypertrophy in channel catfish and green sunfish. Journal of Comparative Physiology. Part B, 158(2), 185–198. https://doi.org/10.1007/BF01075832 DOI: https://doi.org/10.1007/BF01075832

Koenekoop, L., & Åqvist, J. (2023). Principles of cold adaptation of fish lactate dehydrogenases revealed by computer simulations of the catalytic reaction. Molecular Biology Evolution, 40(5), msad099. https://doi.org/10.1093/molbev/msad099 DOI: https://doi.org/10.1093/molbev/msad099

Lannig, G., Eckerle, L., Serendero, I., Sartoris, F.-J., Fischer, T., Knust, R., Johansen, T., & Pörtner, H.O. (2003). Temperature adaptation in eurythermal cod (Gadus morhua): A comparison of mitochondrial enzyme capacities in boreal and Arctic populations. Marine Biology, 142(3), 589–599. https://doi.org/10.1007/s00227-002-0967-6 DOI: https://doi.org/10.1007/s00227-002-0967-6

Li, Q. Q., Zhang, J., Wang, H. Y., Niu, S. F., Wu, R. X., Tang, B. G., Wang, Q. H., Liang, Z. B., & Liang, Y. S. (2023). Transcriptomic response of the liver tissue in Trachinotusovatus to acute heat stress. Animals, 13(13), 2053. https://doi.org/10.3390/ani13132053 DOI: https://doi.org/10.3390/ani13132053

Lin, J. J., & Somero, G. N. (1995a). Thermal adaptation of cytoplasmic malate dehydrogenases of eastern Pacific barracuda (Sphyraenaspp): The role of differential isoenzyme expression. Journal of Experimental Biology, 198(2), 551–560. https://doi.org/10.1242/jeb.198.2.551 DOI: https://doi.org/10.1242/jeb.198.2.551

Lin, J. J., & Somero, G. N. (1995b). Temperature-dependent changes in expression of thermostable and thermolabile isozymes of cytosolic malate dehydrogenase in the eurythermal goby fish Gillichthys mirabilis. Physiological Zoology, 68(1), 114–128. https://doi.org/10.1086/physzool.68.1.30163921 DOI: https://doi.org/10.1086/physzool.68.1.30163921

Luo, L., Zhao, Z., Zhang, R., Guo, K., Wang, S., Xu, W., & Wang, C. (2022). The effects of temperature changes on the isozyme and Hsp70 levels of the Amur sturgeon, Acipenser schrenckii, at two acclimation temperatures. Aquaculture, 551, 737743. https://doi.org/10.1016/j.aquaculture.2021.737743 DOI: https://doi.org/10.1016/j.aquaculture.2021.737743

Markert, C. L., & Faulhaber, I. (1965). Lactate dehydrogenase isozyme patterns of fish. Journal of Experimental Zoology, 159(3), 319–332. https://doi.org/10.1002/jez.1401590304 DOI: https://doi.org/10.1002/jez.1401590304

McCaw, B. A., Stevenson, T. J., & Lancaster, L. T. (2020). Epigenetic responses to temperature and climate. Integrative and Comparative Biology, 60(6), 1469–1480. https://doi.org/10.1093/ icb/icaa049 DOI: https://doi.org/10.1093/icb/icaa049

McKenzie, D. J., Zhang, Y., Eliason, E. J., Schulte, P. M., Claireaux, G., Blasco, F. R., Nati, J. J. H., & Farrell, A. P. (2021). Intraspecific variation in tolerance of warming in fishes. Journal of Fish Biology, 98(6), 1536–1555. https://doi.org/10.1111/jfb.14620 DOI: https://doi.org/10.1111/jfb.14620

Monteiro, M. D. C., Schwantes, M. L. B., Schwantes, A. R., & Silva, M. R. D. A. (1998). Thermal stability of soluble malate dehydrogenase isozymes of subtropical fish belonging to the orders Characiformes, Siluriformes and Perciformes. Genetics and Molecular Biology, 21(2), 191–199. https://doi.org/10.1590/ S1415-47571998000200004 DOI: https://doi.org/10.1590/S1415-47571998000200004

Morgan, R., Andreassen, A. H., Åsheim, E. R., Finnøen, M. H., Dresler, G., Brembu, T., Loh, A., Miest, J. J., & Jutfelt, F. (2022). Reduced physiological plasticity in a fish adapted to stable temperatures. Proceedings of the National Academy of Sciences of the United States of America, 119(22), e2201919119. https://doi.org/10.1073/pnas.2201919119 DOI: https://doi.org/10.1073/pnas.2201919119

Murphy, R. W., Sites, J. W., Buth, D. G., & Haufler, C. H. (1990). Proteins I: isozyme electrophoresis. In D. M. Hillis & C. Moritz (Eds.), Molecular systematics (pp. 45–126). Sinauer Associates, Sunderland, MA.

Ozernyuk, N. D., Klyachko, O. S., & Polosukhina, E. S. (1994). Acclimation temperature affects the functional and structural properties of lactate dehydrogenase from fish (Misgurnusfossilis) skeletal muscles. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 107(1), 141–145. https://doi.org/10.1016/0305-0491(94)90236-4 DOI: https://doi.org/10.1016/0305-0491(94)90236-4

Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J., & Britton-Davidian, J. (1988). Practical isozyme genetics. Ellis Horwood Ltd., Chichester, England.

Poly, W. J. (1997). Nongenetic variation, genetic-environmental interactions and altered gene expression. I. Temperature, photoperiod, diet, pH and sex-related effects. Comparative Biochemistry and Physiology. Part A, Physiology, 117(1), 11–66. https://doi.org/10.1016/s0300-9629(96)00366-0 DOI: https://doi.org/10.1016/S0300-9629(96)00366-0

Powers, D. A., & Schulte, P. M. (1998). Evolutionary adaptations of gene structure and expression in natural populations in relation to a changing environment: A multidisciplinary approach to address the million‐year saga of a small fish. Journal of Experimental Zoology, 282(1–2), 71–94. https://doi.org/10.1002/(SICI)1097-010X(199809/10)282:1/2<71::AID-JEZ11>3.0.CO;2-J DOI: https://doi.org/10.1002/(SICI)1097-010X(199809/10)282:1/2<71::AID-JEZ11>3.0.CO;2-J

Raghavan, R., Philip, S., Ali, A., Katwate, U., & Dahanukar, N. (2016). Fishery, biology, aquaculture and conservation of the threatened Asian Sun catfish. Reviews in Fish Biology and Fisheries, 26(2), 169–180. https://doi.org/10.1007/s11160-016-9418-1 DOI: https://doi.org/10.1007/s11160-016-9418-1

Rao, M. R. K., Padhi, B. K., & Khuda-Bukhsh, A. R. (1989). Lactate dehydrogenase isozymes in fifty-two species of teleostean fishes: Taxonomic significance of Ldh-C gene expression. Biochemical Systematics and Ecology, 17(1), 69–76. https://doi.org/10.1016/0305-1978(89)90045-8 DOI: https://doi.org/10.1016/0305-1978(89)90045-8

Schulte, P. M. (2004). Changes in gene expression as biochemical adaptations to environmental change: A tribute to Peter Hochachka. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 139(3), 519–529. https://doi.org/10.1016/j.cbpc.2004.06.001 DOI: https://doi.org/10.1016/j.cbpc.2004.06.001

Schwantes, M. L. B., & Schwantes, A. R. (1982a). Adaptative features of ectothermic enzymes—I. Temperature effects on the malate dehydrogenase from a temperate fish Leiostomusxanthurus. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 72(1), 49–58. https://doi.org/10.1016/0305-0491(82)90009-8 DOI: https://doi.org/10.1016/0305-0491(82)90009-8

Schwantes, M. L. B., & Schwantes, A. R. (1982b). Adaptative features of ectothermic enzymes—II. The effects of acclimation temperature on the malate dehydrogenase of the spot, Leiostomusxanthurus. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 72(1), 59–64. https://doi.org/10.1016/0305-0491(82)90010-4 DOI: https://doi.org/10.1016/0305-0491(82)90010-4

Seddon, W. L. (1997). Mechanisms of temperature acclimation in the channel catfish Ictalurus punctatus: Isozymes and quantitative changes. Comparative Biochemistry and Physiology Part A: Physiology, 118(3), 813–820. https://doi.org/10.1016/S0300-9629(97)87356-2 DOI: https://doi.org/10.1016/S0300-9629(97)87356-2

Segal, J. A., & Crawford, D. L. (1994). LDH-B enzyme expression: The mechanisms of altered gene expression in acclimation and evolutionary adaptation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 267(4), R1150–R1153. https://doi.org/10.1152/ajpregu.1994.267.4.R1150 DOI: https://doi.org/10.1152/ajpregu.1994.267.4.R1150

Sejian, V., Bhatta, R., Gaughan, J. B., Dunshea, F. R., &Lacetera, N. (2018). Review: Adaptation of animals to heat stress. Animal, 12(s2), s431–s444. https://doi.org/10.1017/S1751731118001945 DOI: https://doi.org/10.1017/S1751731118001945

Shaklee, J. B., Allendorf, F. W., Morizot, D. C., & Whitt, G. S. (1990). Gene nomenclature for protein-coding loci in fish. Transactions of the American Fisheries Society, 119(1), 2–15. https://doi.org/10.1577/1548-8659(1990)119<0002:GNFPLI>2.3. CO;2 DOI: https://doi.org/10.1577/1548-8659(1990)119<0002:GNFPLI>2.3.CO;2

Smirnova, Y. A., Zinov’eva, R. D., & Ozernyuk, N. D. (2002). Effect of thermal acclimation on the expression of gene coding for lactate dehydrogenase A 4. In Loach Skeletal Muscle. Biology bulletin of the Russian Academy of Sciences, 29, 207–211. DOI: https://doi.org/10.1023/A:1015429511783

Somero, G. N. (1973). Thermal modulation of pyruvate metabolism in the fish Gillichthys mirabilis: The role of lactate dehydrogenases. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 44(1), 205-206. https://doi.org/10.1016/0305-0491(73)90357-x DOI: https://doi.org/10.1016/0305-0491(73)90357-X

Somero, G. N. (2004). Adaptation of enzymes to temperature: Searching for basic “strategies”.Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 139(3), 321–333. https://doi.org/10.1016/j.cbpc.2004.05.003 DOI: https://doi.org/10.1016/j.cbpc.2004.05.003

Somero, G. N. (1975). The role of isozymes to adaptation varying temperature. In C. L. Markert (Ed.), Isozymes II. Physiological function (pp. 221–234). Academic Press, New York. DOI: https://doi.org/10.1016/B978-0-12-472702-1.50021-9

Sureshkumar, S., Ranjeet, K., & Radhakrishnan, K. V. (2013). Live handling and domestication of selected indigenous ornamental fishes of India. International Journal of Fisheries and Aquatic Studies, 1(5), 08–11.

Tattersall, G. J., Sinclair, B. J., Withers, P. C., Fields, P. A., Seebacher, F., Cooper, C. E., & Maloney, S. K. (2012). Coping with thermal challenges: Physiological adaptations to environmental temperatures. Comprehensive Physiology, 2(3), 2151–2202. https://doi.org/10.1002/cphy.c110055 DOI: https://doi.org/10.1002/cphy.c110055

Triveni, A., & Rao, P. R. (1986). Tissue distribution and characterization of LDH isozymes in two fishes of the order Cypriniformes. Proceedings of Indian Academy of Science: Animal Sciences, 95(2), 255–262. https://doi.org/10.1007/BF03179584 DOI: https://doi.org/10.1007/BF03179584

Volkoff, H., & Rønnestad, I. (2020). Effects of temperature on feeding and digestive processes in fish. Temperature, 7(4), 307–320. https://doi.org/10.1080/23328940.2020.1765950 DOI: https://doi.org/10.1080/23328940.2020.1765950

Vornanen, M. (1994). Seasonal adaptation of crucian carp (Carassius carassius L.) heart: Glycogen stores and lactate dehydrogenase activity. Canadian Journal of Zoology, 72(3), 433–442. https://doi.org/10.1139/z94-061 DOI: https://doi.org/10.1139/z94-061

Walker, J. M. (2002). Nondenaturing polyacrylamide gel electrophoresis of proteins. In J. M. Walker (Ed.), The Protein Protocols Handbook (pp. 57–60). Humana Press, Totowa, N.J. DOI: https://doi.org/10.1385/1-59259-169-8:57

Wilson, F. R., Champion, M. J., Whitt, G. S., & Prosser, C. L. (1975). Isozyme patterns of in tissues of temperature-acclimated fishes. In C. L. Market (Ed.), Isozymes II, Physiological function (pp. 193–206). Academy Press, New York. DOI: https://doi.org/10.1016/B978-0-12-472702-1.50019-0

Zakhartsev, M., Johansen, T., Pörtner, H. O., & Blust, R. (2004). Effects of temperature acclimation on lactate dehydrogenase of cod (Gadus morhua): Genetic, kinetic and thermodynamic aspects. Journal of Experimental Biology, 207(1), 95–112. https://doi.org/10.1242/jeb.00708 DOI: https://doi.org/10.1242/jeb.00708

Downloads

Published

2023-08-31

How to Cite

Dalvi, R. S., Pal, A. K., & Debnath, D. (2023). Acclimation to warm temperatures modulates lactate and malate dehydrogenase isozymes in juvenile Horabagrus brachysoma (Günther). Journal of Experimental Biology and Agricultural Sciences, 11(4), 683–695. https://doi.org/10.18006/2023.11(4).683.695

Issue

Section

RESEARCH ARTICLES

Categories